Perfecting a viral pack mule

March 29, 2016
Perfecting a viral pack mule
A new study shows that a hollowed-out version of cowpea mosaic virus could be useful in human therapies. Credit: The Scripps Research Institute

Viruses aren't always bad. In fact, scientists can harness the capabilities of some viruses for good—modifying the viruses to carry drug molecules, for example.

One useful virus has been (CPMV), a plant pathogen that can be modified to aid in tumor detection and even chemotherapy.

In a new study, published online ahead of print in the journal Structure, researchers at The Scripps Research Institute (TSRI) report that, based on its , a hollowed-out version of CPMV could also be effective in human therapies.

"By studying the structure of the viral , we can get important information for transforming this into a useful therapeutic," said TSRI Associate Professor Vijay Reddy, senior author of the study.

An 'empty' virus

TSRI researchers have studied CPMV for decades. In fact, the structure of the virus was first determined in the lab of TSRI Professor Jack Johnson, who also served as a co-author on the new study.

CPMV is an especially useful drug delivery agent because it has about 300 different sites on its external and internal surfaces where researchers can attach molecules. Because CPMV is a plant virus, it is harmless to humans. To eliminate any lingering concerns of viral genomes entering the human body, scientists have created "empty" versions of CPMV, called eVLPs (empty virus-like particles), which lack the virus's genetic material.

"The eVLP is no longer a virus; it is just a protein capsule," explained Reddy.

The question has been whether eVLPs of CPMV retain the same structure in the absence of viral genome as natural CPMV viral particles.

Able to carry the load

In the new study, Reddy and his colleagues used an imaging technique called x-ray crystallography to create a high-resolution image of the 3D structure of CPMV eVLPs.

The image showed the structures of eVLP particles are very similar to CPMV particles, giving scientists the go-ahead to use the same modification strategies on both. This finding was in sync with a previous study showing eVLPs at a lower resolution.

The current study also revealed a new detail on both eVLPs and CPMV particles. Mass-spectrometry-based proteomics analysis identified multiple proteolytic cleavage sites—a spot where amino acids are cut off—on one of the proteins on the particle surface. Previous research had indicated only one such cleavage site in this region, not three. With the new information, researchers know not to add crucial molecules to those in case they get clipped off too.

Reddy said the new study opens the door to future research on using eVLPs to carry and designing customized vaccines.

Explore further: Groundbreaking microscopy unlocks secrets of plant virus assembly

More information: Nhung T. Huynh et al. Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus, Structure (2016). DOI: 10.1016/j.str.2016.02.011

Related Stories

Scientists determine workings of potentially useful virus

May 1, 2009

In a study published in May 2009 issue of PLoS Pathogens, Manchester and her colleagues show that CPMV interacts with the mammalian protein vimentin — an interaction that scientists can now explore with the idea of using ...

Hepatitis virus-like particles as potential cancer treatment

February 3, 2016

UC Davis researchers have developed a way to use the empty shell of a Hepatitis E virus to carry vaccines or drugs into the body. The technique has been tested in rodents as a way to target breast cancer, and is available ...

Recommended for you

New discovery challenges long-held evolutionary theory

October 19, 2017

Monash scientists involved in one of the world's longest evolution experiments have debunked an established theory with a study that provides a 'high-resolution' view of the molecular details of adaptation.

Water striders illustrate evolutionary processes

October 19, 2017

How do new species arise and diversify in nature? Natural selection offers an explanation, but the genetic and environmental conditions behind this mechanism are still poorly understood. A team led by Abderrahman Khila at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.