Team gets new close-up view of key part of Ebola virus life cycle

June 25, 2015, The Scripps Research Institute
The Scripps Research Institute team's high-resolution image revealed how a viral protein called VP35 helps protect the Ebola virus from the body's immune system. Credit: The Scripps Research Institute.

A new study led by scientists at The Scripps Research Institute (TSRI) reveals a key part of the Ebola virus life cycle at a higher resolution than ever before. The research sheds light on how Ebola virus assembles—and how researchers might stop the often-fatal infection.

"This higher resolution is critical for design of much-needed antiviral therapeutics," said Erica Ollmann Saphire, senior author of the new study, professor at TSRI and director of the Viral Hemorrhagic Fever Immunotherapeutic Consortium. "These structures provide the blueprints that we need to see key vulnerabilities to attack."

The new study, published online ahead of print today in the journal Cell Reports, builds on previous work in Saphire's lab showing that a called VP35 has a role in protecting both Ebola virus and its "cousin," the deadly Marburg virus, from the immune system. VP35 helps ("chaperones") a viral protein, helping it coil and form a protein shell (nucleocapsid) around the virus's . With a virus's genetic material blocked from view, the human immune system cannot mount an effective defense.

Until now, scientists had not been able to see the coiling process in great detail. But using an imaging technique called x-ray crystallography, Saphire and her colleagues were able to show exactly how VP35 helps the viral protein that creates the capsid.

The new structure also reveals how the VP35 protein prevents the nucleocapsid from assembling incorrectly. The researchers could even see key atoms and structures called side chains—crucial pieces for moving forward with structure-based drug design.

The researchers believe these findings could be significant for more than just Ebola . "The structure we revealed is likely conserved across all the filoviruses: Marburg, Sudan, Bundibugyo, Reston and Ebola," said Saphire.

TSRI Research Associate Robert Kirchdoerfer, first author of the new study, added that the new understanding of viral assembly could be applied to Mononegavirales, an order of viruses that includes measles and rabies.

Explore further: New Ebola study points to potential drug target

More information: "Assembly of the Ebola virus nucleoprotein from a chaperoned VP35 complex" Cell Reports, 2015.

Related Stories

New Ebola study points to potential drug target

April 9, 2015

Opening the door to potential treatments for the deadly Ebola virus, scientists have found that a protein made by the virus plays a role similar to that of a coat-check attendant.

Scientists reveal weak spots in Ebola's defenses

November 17, 2014

Scientists at The Scripps Research Institute (TSRI) have identified weak spots on the surface of Ebola virus that are targeted by the antibodies in ZMapp, the experimental drug cocktail administered to several patients during ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.