Surface-going cave crickets actually more isolated than cave-dwelling cousins

March 16, 2016 by Frank Otto, Drexel University
A pair of Ceuthophilus crickets. Credit: Photo by Jean Krejca.

People sometimes rely on the stereotype of a kid living in their parents' basement to illustrate poor socialization and isolation.

But the basement-dwellers may be connected with others in ways that those who are "out in the world" might not. And that seems to be the case for a group of crickets.

Recently published research by a team of scientists found that a sub-genus (a group of species) of crickets, Ceuthophilus, which is known to venture out of caves, show a higher degree of genetic isolation than its cousins, Geotettix, who live strictly inside the caves.

"The main issue is that Ceuthophilus leaves the cave to forage at night, whereas Geotettix doesn't. That led us to hypothesize that perhaps Ceuthophilus was better at dispersing and might not show as much genetic structure," said Jason Weckstein, PhD, associate professor in the Department of Biodiversity, Earth and Environmental Science at Drexel University's College of Arts and Science. "In fact, what we found was the Ceuthophilus showed deeper—older—structure than Geotettix."

Weckstein is the lead author on the recent publication of the study's findings in the Journal of Biogeography called "Comparative phylogeography of two codistributed subgenera of cave crickets." Other authors included Steve Taylor, PhD, Kevin Johnson, PhD, John Murdoch, PhD, Daniela Takiya, PhD, Jean Krejca, PhD, James Reddell and George Veni, PhD.

The crickets in the study live in a variety of caves in central Texas, from which the team collected specimens and then analyzed their DNA.

Ceuthophilus are known to be trogloxenes, meaning that they live parts of their lives in caves. Species in the Ceuthophilus sub-genus lay their eggs and spend the day in caves but come out to forage at night.

Geottetix, meanwhile, are troglobites, which means that they spend all of their lives deep in caves. The team wrote that Geotettix have almost never been recorded on the surface outside a cave entrance.

Going into the study, the scientists believed that since the Ceuthophilus sometimes go to the surface that they would have more opportunity to disperse between caves. That mobility, it was believed, would make populations of Ceuthophilus more connected and result in less than the subgenus Geotettix. This is because dispersal has the potential to allow individuals from different populations to breed with one another, which would homogenize genetic variation among these populations.

On the other hand, a lack of dispersal allows individual populations to evolve genetic differences in isolation. Previous studies of other cave-dwelling organisms pointed toward the belief that Ceuthophulus would be less genetically distinct, but the study's data conflicted with that hypothesis.

"The fact that we see deep in the Ceuthophilus suggest that individuals from different cave populations are not dispersing long distances to breed with individuals in other populations," Weckstein said. "There are more groups of genetically distinct populations in Ceuthophilus than we would have expected."

Although the Ceuthophilus may be able to move around outside of a cave environment, populations seem to be isolated enough that they are not genetically homogenized and still retain distinct, population-specific genetic characteristics.

The isolation of Ceuthophilus could be attributed to surface structures, such as rivers or other natural barriers. Meanwhile, the fact that Geotettix exhibits evidence of lesser (and more homogeneity) could point to the potential of greater mobility in the caves beneath the surface through interconnected caverns.

In the course of the study, the team discovered a plethora of genetically distinct cricket lineages that likely correspond to undescribed species. They agreed that taxonomic work, describing new species, is critically needed for understanding and conserving this group of organisms.

"Considering these results and that most of the species in this genus were described more than 75 years ago, the taxonomy for this group is desperately out of date," said Krejca. "If the for endangered cave invertebrates are to include protection of cave cricket foraging ranges, further work is needed to describe which species occur in different areas and what the differences are in their foraging behavior, migration and habitat use."

Ultimately, more research will be needed to fully understand why Ceuthophilus became so . But what findings the study did turn up have implications for both understanding biodiversity and the endemism of both crickets and other organisms in these caves.

"Given that we found this distinct pattern of structure between caves, other cave-dwellers that haven't been studied also likely show these patterns," Weckstein said. "So this is a good proxy for studying them."

Additionally, discovering that the crickets may not be moving distances outside of the cave has implications for conservation.

"Cave crickets that go outside the cave and then return to the caves during the day are sources of nutrients for these cave communities," Weckstein explained. "If these Ceuthophilus cave crickets are, in fact, multiple endemic lineages then, from a conservation perspective, that has implications for the conservation of other living things in the caves. We need to treat many of these lineages as unique conservation units rather than a widespread species."

Explore further: Genetic study of cave millipedes reveals isolated populations and ancient divergence between species

Related Stories

A kingdom of cave beetles found in Southern China

November 14, 2014

A team of scientists specializing in cave biodiversity from the South China Agricultural University (Guangzhou) unearthed a treasure trove of rare blind cave beetles. The description of seven new species of underground Trechinae ...

New cave-dwelling arachnids discovered in Brazil

May 22, 2013

Two new species of cave-dwelling short-tailed whipscorpions have been discovered in northeastern Brazil, and are described in research published May 22 in the open access journal PLOS ONE by Adalberto Santos, from the Federal ...

Four new dragon millipedes found in China

October 30, 2014

A team of speleobiologists from the South China Agriculture University and the Russian Academy of Sciences have described four new species of the dragon millipedes from southern China, two of which seem to be cave dwellers. ...

Only above-water microbes play a role in cave development

September 2, 2015

Only the microbes located above the water's surface contribute to the development of hydrogen-sulfide-rich caves, suggests an international team of researchers. Since 2004, researchers have been studying the Frasassi cave ...

Recommended for you

Termite queen, king recognition pheromone identified

March 19, 2018

Researchers at North Carolina State University have for the first time identified a specific chemical used by the higher termite castes—the queens and the kings—to communicate their royal status with worker termites. ...

Making intricate images with bacterial communities

March 19, 2018

Working with light and genetically engineered bacteria, researchers from Stanford University are able to shape the growth of bacterial communities. From polka dots to stripes to circuits, they can render intricate designs ...

New life form answers question about evolution of cells

March 19, 2018

Bacteria and Archaea are two of the three domains of life. Both must have evolved from the putative last universal common ancestor (LUCA). One hypothesis is that this happened because the cell membrane in LUCA was an unstable ...

Research signals arrival of a complete human genome

March 19, 2018

It's been nearly two decades since a UC Santa Cruz research team announced that they had assembled and posted the first human genome sequence on the internet. Despite the passage of time, enormous gaps remain in our genomic ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.