Surface chemistry offers new approach to directing crystal formation in pharmaceutical industry

March 9, 2016, Agency for Science, Technology and Research (A*STAR), Singapore
Surface chemistry offers new approach to directing crystal formation in pharmaceutical industry
Temperature–concentration phase diagrams aid planning of crystallization processes on an industrial scale. Credit: The Royal Society of Chemistry. 

A study by A*STAR researchers suggests the surface properties of the glass vessels in which pharmaceutical ingredients are prepared has an effect on how they crystallize.

When deciding how to control crystallization of an active ingredient during large scale production, drug companies consider many parameters such as solvent type, solute concentration and temperature to ensure the right crystal form.

Different crystal forms (polymorphs) of exhibit different physicochemical properties and can behave very differently once inside the body, so reliable production of the required polymorph is vital.

In 2014, Sendhil Poornachary at the A*STAR Institute of Chemical and Engineering Sciences and colleagues showed that the surface chemistry of modified glass vials influences nucleation and growth of selective crystal polymorphs of the anticonvulsant drug carbamazepine. While needle-shaped crystals preferentially formed in the cyano-functionalized vials, tetrahedral-shaped crystals formed in those modified with fluoro- and mercapto-groups. A mixture of the two forms was crystallized inside a control (unmodified) glass vial.

Now, the team has extensively studied the temperature ranges and solute concentrations at which the crystallization of carbamazepine occurs on different chemically-modified surfaces1. By observing the crystal polymorph formed in these vials at a given temperature and concentration, the polymorph occurrence regions were plotted on a temperature–concentration phase diagram (see image). "This type of representation is important to the pharmaceutical industry in the context of defining the design space for a robust crystallization process development," Poornachary says.

The impact of surface chemistry on the crystallization process was then investigated with the help of molecular models. "The experimental results were correlated with the results from a molecular modeling study, which revealed that specific chemical interactions between the crystal structure and functional groups on the template surface promoted nucleation of a particular polymorph," explains Poornachary.

"We envisage that the insights from this work will help develop in silico models to predict the crystallization of [any] active pharmaceutical ingredient on a given template surface," he adds. It is also hoped that surfaces that promote selective nucleation of crystal forms may enable greener, aqueous solvents to be used in a wider range of crystallizations.

Next, the team plans to test the use of functionalized templates to direct the crystallization of carbamazepine on a larger scale. "Potential design approaches for template-induced development could include forced flow through functionalized glass capillaries or using functionalized template particles as seeds, rather than the functionalized vessels we have used for this work."

Explore further: Surface chemistry controls the selective nucleation of crystal polymorphs of a pharmaceutical drug

More information: Jose V. Parambil et al. Establishing template-induced polymorphic domains for API crystallisation: the case of carbamazepine, CrystEngComm (2015). DOI: 10.1039/c5ce01080b

Related Stories

Watching protein crystal nucleation in real time

January 21, 2015

A major hurdle in structural biology and pharmacology is growing crystals to determine the structure of the biomolecules and pharmaceuticals under study. Researchers at the University of Tübingen, working with colleagues ...

Cold crystallization has a dual nature

July 22, 2015

In some vitrous substances, when heated, not one, but two physical mechanisms are reponsible for crystallization, as scientists working at the Insitiute of Nuclear Physics in Krakow, Poland, have discovered. The first-time ...

Crystal studies reveal malaria's weak spots

April 3, 2015

(—The World Health Organization's 2014 report on worldwide malaria cases showed that while there has been a significant decrease in the incidence of malaria, overall, there were still 198 million cases reported ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.