Starvation as babies makes bees stronger as adults

March 30, 2016, Arizona State University
Short-term starvation as larvae actually makes honey bees more resilient to nutritional deprivation as adults. This suggests they have an anticipatory mechanism like solitary organisms do. These findings change the current understanding of colony collapse disorder and provide new avenues to study. Credit: Christofer Bang

A lack of adequate nutrition is blamed as one of many possible causes for colony collapse disorder or CCD—a mysterious syndrome that causes a honey bee colony to die. Parasites, pesticides, pathogens and environmental changes are also stressors believed responsible for the decline of honey bees.

Since are critical to the world's food supply, learning how bees cope with these stressors is critical to understanding honey bee health and performance.

In two new studies, researchers from Arizona State University's School of Life Sciences have discovered that the stress of short-term nutritional deprivation as larvae (baby bees) actually makes honey bees more resilient to as adults.

"Surprisingly, we found that short-term starvation in the larval stage makes adult honey bees more adaptive to adult starvation. This suggests that they have an anticipatory mechanism like solitary organisms do," said Ying Wang, assistant research professor with the school and lead author of the two investigations. Wang said they found evidence of this mechanism in several areas such as behavior, endocrine physiology, metabolism and gene regulation.

The anticipatory mechanism, also called "predictive adaptive response," explains a possible correlation between prenatal nutritional stress and adult metabolic disorders such as obesity and diabetes in humans. Yet, Athese findings show for the first time that social organisms can have this mechanism.

Since most research on bee nutrition has focused on using adult honey bees, rather than their young, this new information changes the current understanding of and provides new avenues to study.

The findings are published in two papers appearing today in the Journal of Experimental Biology.

Interestingly, Wang and her colleagues also found that when bees experienced starvation as larvae, they could reduce their metabolic rate, maintain their blood sugar levels, and use other fuels faster than the control bees during starvation. This increased the probability of their survival under a starvation situation.

"These studies show how the fundamental physiology of animals separated by hundreds of millions of years of evolution maintain central, common features that allow us to learn more about ourselves from studying them and about them by looking to ourselves," said Rob Page, University Provost Emeritus and co-author of the paper. "They reveal key features of honey bee physiology that may help us find solutions to the serious problems of bee health world wide."

Managed have declined worldwide, down to 2.5 million today from 5 million in the 1940s. This comes at a time when the global demand for food is rising to meet the nutrition needs of 7.4 billion people. Since multiple stressors are negatively impacting bee health, Wang's new findings may provide a different strategy to help solve the problem of disorder.

"Manipulations during development may be able to increase the bees' resistance to different stressors, much like how an immunization works," added Wang. "However, we are at a starting point with this new discovery and we will have many questions to be answered."

Explore further: Male bees protect female bees from sexually transmitted diseases

More information: Wang, Y., Kaftanoglu, O., Brent, C. S., Page, R. E., Jr and Amdam, G. V. (2016). Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.) J. Exp. Biol. 216, DOI: 10.1242/jeb.130435

Wang, Y., Campbell, J. B., Kaftanoglu, O., Page, R. E., Jr,Amdam,G.V. andHarrison, J.F. (2016). Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.). J. Exp. Biol. 216, DOI: 10.1242/jeb.136374

Related Stories

Best for bees to be stay-at-homes

July 14, 2014

Honey bees with roots in the local environment manage much better in the struggle for survival than imported honey bees from foreign environments.

'Stressed' young bees could be the cause of colony collapse

February 9, 2015

Colony Collapse Disorder (CCD) is a major threat to bee colonies around the world and affects their ability to perform vital human food crop pollination. It has been a cause of urgent concern for scientists and farmers around ...

Recommended for you

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.