Physicists prove new potential for silicon chips

February 26, 2016, University of Salford

Scientists have opened a door to faster, cheaper telecommunications after proving a new link between silicon chips and 'rare-earth' metals used in internet signalling.

Silicon is the 'gold standard' semiconductor at the heart of the computer industry but lacks the ability to produce, detect and amplify the light signals that are sent down . For the amplification of these light signals, we rely on rare-earth elements, which were thought to not interact optically with silicon.

However physicists at the University of Salford and the University of Surrey have made a novel discovery by showing for the first time, that light can be generated by an electron 'jumping' directly between silicon and rare-earths.

"The in silicon chips needs to be converted into light to send down optical fibre, then back to electronic data, by separate devices. If the conversion between electronic and light signals can happen on a , it would streamline the way data travels around the world," explains Dr Mark Hughes, lecturer in physics at the University of Salford.

'Channel Tunnel factor'

"It's the Channel Tunnel factor. Instead of having to change from a train to the ferry and then back to the train, you would have one single train journey. It would be a major step forward."

Rare-earths usually give off light at very specific colours or 'wavelengths', and silicon doesn't usually give off any light at all. However, the physicists implanted the rare-earth elements cerium, europium and ytterbium into silicon and found that not only did it give off light, but the wavelengths emitted by the rare-earths had been shifted to those that can be used in optical fibre. The shift in wavelength showed that there must have been a jump or 'transition' of an electron from silicon to the other elements.

The researchers also made high performances light emitting diodes (LEDs) and optical detectors using their rare-earth implanted silicon technology. These devices are able to produce and detect telecommunication wavelength light using silicon.

Added Dr Hughes: "In short, we have already made the first step in demonstrating the conversion between electronic and that could create the future chip."

Explore further: Exciting silicon nanoparticles

More information: Manon A. Lourenço et al. Silicon-Modified Rare-Earth Transitions-A New Route to Near- and Mid-IR Photonics, Advanced Functional Materials (2016). DOI: 10.1002/adfm.201504662

Related Stories

Exciting silicon nanoparticles

January 27, 2016

A method to characterize and design the optical properties of silicon nanoparticles for their use on silicon chips has been developed by A*STAR researchers in collaboration with colleagues from Russia, Israel and Australia. ...

Silicon-based metamaterials could bring photonic circuits

January 29, 2016

New transparent metamaterials under development could make possible computer chips and interconnecting circuits that use light instead of electrons to process and transmit data, representing a potential leap in performance.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.