Breakthrough improves method for synthesizing cyanohydrins as pharmaceutical precursors

February 22, 2016
A cyano group is added to a ketone using a chiral lithium(I) catalyst system to achieve control over the symmetry of the resulting pharmaceutical cyanohydrins.

A research group led by Dr. Kazuaki Ishihara, a professor at Nagoya University, has established a new method of chemically modifying ketones in a way that ensures that optically active cyanohydrins are obtained, enabling efficient production of pharmaceutical precursors at a high yield and with good selectivity.

In the production of pharmaceuticals, it is extremely important to produce molecules that have the right kind of symmetry. Even products that have the same composition, but are mirror images of each other, can have different effects in the body. Considerable interest has been generated by a recent advance made by scientists at Nagoya University, which was reported online in the journal Angewandte Chemie. Specifically, these researchers managed to modify molecules called by adding new chemical groups in a way that produces more of a single mirror image of the same type of molecule.

This study extends previous work on modifying ketones to produce cyanohydrins, which are useful molecules because they are precursors of carboxylic acids and some amino acids, which are the building blocks of life. The similarity of cyanohydrins and their derivatives to amino acids means that they have important properties. However, in previous studies, the modification of ketones to produce cyanohydrins was inefficient, time-consuming, could only produce a small amount of desired product, and was only available for a narrow range of compounds.

These obstacles have now been overcome by an innovative new reaction. "Using a new catalyst, chiral lithium(I) phosphoryl phenoxide, we have been able to add a cyano group with excellent enantioselectivity on ketones using lithium dicyanotrimethylsilicate(IV)," says Dr. Manabu Hatano, an associate professor and the first author. "This reaction had a high yield despite only a weak Lewis acid catalyst being used."

Previous studies in which efforts were made to produce optically active cyanohydrins encountered difficulties when using ketones rather than aldehydes as the molecules to be cyanosilylated because they are less reactive. This was overcome by the new approach, which was demonstrated by synthesizing a key intermediate for the production of (+)-13-hydroxyisocyclocelabenzine, a pharmaceutical that has antibacterial and antitumor effects. 

"Another advantage of our new method is that the reaction time is much shorter, lasting only 2 to 9 hours rather than 1 to 2 days," according to Katsuya Yamakawa, another member of the research team. "This would be helpful in the pharmaceutical industry when attempting to produce the desired products on a large scale for medical use."

After the demonstration of this new catalytic system in a large-scale reaction, it is hoped that it can be applied widely for more effective cyanosilylation, enabling cheaper and more accurate production of pharmaceutical products.

Explore further: Unique method creates correct mirror image of molecule

Related Stories

Unique method creates correct mirror image of molecule

May 22, 2013

Many molecules have a right and a left form, just like shoes. In pharmaceuticals, it is important that the correct form of the molecule is used. Researchers at the University of Gothenburg, Sweden, have been able to produce ...

High-altitude weight loss may have an evolutionary advantage

June 16, 2014

Weight loss at high altitudes—something universally experienced by climbers and people who move to higher terrain—may not be a detrimental effect, but rather is likely an evolutionarily-programmed adaptation, according ...

Recommended for you

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(Phys.org)—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.