Scientists pursue a diabetes drug that also fights obesity

January 27, 2016 by Charlotte Hsu, University at Buffalo
Scientists at the University at Buffalo and California Institute for Biomedical Research are developing a diabetes therapy based on a modified version of the hormone oxyntomodulin. In this illustration, the modified hormone (top) binds to a glucagon-like peptide-1 receptor (bottom). A chemical linker (top, in turquoise) helps the molecule keeps its helical shape — an innovation that could improve the potential treatment's effectiveness. Credit: Yulin Tian

Insulin helps patients with Type 2 diabetes regulate their blood sugar, but the treatment is also associated with weight gain—an unwanted and unhealthy side effect.

To address that problem, scientists at the University at Buffalo and California Institute for Biomedical Research (Calibr) in La Jolla, California, are working to develop a therapy that could enable patients to control while also losing weight.

The treatment the researchers are developing is based on oxyntomodulin, a hormone that performs two important biological functions: First, it helps to keep glucose levels low by helping to increase insulin production. Second, the hormone encourages in part by facilitating processes that reduce food intake and increase the body's expenditure of energy.

"On its own, oxyntomodulin has a short half-life. It's broken down quickly in the body, which means that patients would need to take it often and use high doses for it to work as a pharmaceutical," says Qing Lin, a chemistry professor in UB's College of Arts and Sciences. "We've modified the hormone's structure in a way that enhances its potency and enables it to survive in the body for longer periods of time, which allows for less frequent and more effective dosing."

On Jan. 4 in ACS Chemical Biology, the researchers report that they have created several new versions of oxyntomodulin, including two that decreased considerably in mice. Mice that received one of the two new compounds after ingesting glucose saw their glucose levels fall by 40 to 45 percent more than mice that received a placebo treatment. The two compounds also survived longer inside the animals than oxyntomodulin as it's found in nature. Lin was a senior author on the paper, along with Weijun Shen at Calibr.

Lin has founded a startup, Transira Therapeutics, to further explore the potential therapy.

Keeping oxyntomodulin in a helix

In the body, oxyntomodulin regulates glucose levels and facilitates weight loss by binding to and activating two cellular receptors: the glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R).

Oxyntomodulin performs its job best when it's in a certain helix conformation, but like many other peptide hormones, oxyntomodulin usually shifts between different shapes, including various helices and a random coil.

Lin and his colleagues use a clever chemistry trick to help oxyntomodulin keep its helical shape.

Their patented method is called chemical cross-linking. It involves engineering an oxyntomodulin molecule to include two groups of chemicals containing an amino acid called cysteine on different parts of the molecule, and then using a chemical linker to fasten those two groups together to make the molecule rigid.

In cultured cells, cross-linked oxyntomodulin molecules were extremely effective in activating GCGR and GLP-1R, Lin and his colleagues reported in ACS Chemical Biology. The helical molecules are also harder for enzymes to break down, which helps the molecules survive longer in the body.

Explore further: GLP-1 receptor agonists can manage postprandial glucose

More information: Avinash Muppidi et al. Design of Potent and Proteolytically Stable Oxyntomodulin Analogs, ACS Chemical Biology (2016). DOI: 10.1021/acschembio.5b00787

Related Stories

GLP-1 receptor agonists can manage postprandial glucose

November 17, 2015

(HealthDay)—Glucagon-like peptide 1 (GLP-1) receptor agonists appear beneficial for postprandial glucose management in type 2 diabetes, according to a report published in the October issue of Clinical Diabetes.

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.