Using light for targeted drug delivery could help fight tumors, local infections

January 20, 2016, American Chemical Society

Some drug regimens, such as those designed to eliminate tumors, are notorious for nasty side effects. Unwanted symptoms are often the result of medicine going where it's not needed and harming healthy cells. To minimize this risk, researchers have developed nanoparticles that only release a drug when exposed to near-infrared light, which doctors could beam onto a specific site. Their report appears in the Journal of the American Chemical Society.

For years, scientists have been striving to develop localized treatments to reduce side effects of therapeutic drugs. They have designed drug-delivery systems that respond to light, temperature, ultrasound and pH changes. One promising approach involved drug-carrying materials that are sensitive to ultraviolet (UV) light. Shining a beam in this part of the light spectrum causes the materials to release their therapeutic cargo. But UV light has major limitations. It can't penetrate body tissues, and it is carcinogenic with repeated exposure. Near-infrared (NIR) light, however, can go through 1 to 2 centimeters of tissue and would be a safer alternative, but photosensitive drug-carriers don't react to it. Marta Cerruti, Fiorenzo Vetrone and colleagues sought to develop a solution that takes advantage of both types of light.

The researchers started with nanoparticles that convert NIR light into UV light and coated them in a UV-sensitive hydrogel shell infused with a fluorescent protein, a stand-in for . When exposed to NIR light, the nanoparticles instantaneously converted it to UV, which induced the shell to release the protein payload. The researchers note that their on-demand delivery system could not only supply drug molecules but also agents for imaging and diagnostics.

Explore further: Tiny 'flasks' speed up chemical reactions

More information: Ghulam Jalani et al. Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery, Journal of the American Chemical Society (2016). DOI: 10.1021/jacs.5b12357

Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) have emerged as excellent nanotransducers for converting longer wavelength near-infrared (NIR) light to shorter wavelengths spanning the ultraviolet (UV) to the visible (Vis) regions of the spectrum via a multiphoton absorption process, known as upconversion. Here, we report the development of NIR to UV–Vis–NIR UCNPs consisting of LiYF4:Yb3+/Tm3+@SiO2 individually coated with a 10 ± 2 nm layer of chitosan (CH) hydrogel cross-linked with a photocleavable cross-linker (PhL). We encapsulated fluorescent-bovine serum albumin (FITC-BSA) inside the gel. Under 980 nm excitation, the upconverted UV emission cleaves the PhL cross-links and instantaneously liberates the FITC-BSA under 2 cm thick tissue. The release is immediately arrested if the excitation source is switched off. The upconverted NIR light allows for the tracking of particles under the tissue. Nucleus pulposus (NP) cells cultured with UCNPs are viable both in the presence and in the absence of laser irradiation. Controlled drug delivery of large biomolecules and deep tissue imaging make this system an excellent theranostic platform for tissue engineering, biomapping, and cellular imaging applications.

Related Stories

Tiny 'flasks' speed up chemical reactions

January 7, 2016

Miniature self-assembling "flasks" created at the Weizmann Institute may prove a useful tool in research and industry. The nanoflasks, which have a span of several nanometers, or millionths of a millimeter, can accelerate ...

Researchers seek to improve drug delivery with hydrogels

November 2, 2012

Researchers in Japan have developed a technique which allows them to control and target drug delivery to specific sites of the body at specific times, thus reducing side effects and improving treatment dramatically. The results ...

Study examines the use of light in medical therapy

March 30, 2009

A study published in a special issue of Photochemistry and Photobiology examines the emerging practice of drug delivery systems which use the application of light to activate medications in the body.

Recommended for you

New fuel cell technology runs on solid carbon

January 22, 2018

Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory ...

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.