Scientists predict activity of human genes

December 17, 2015, University of Zurich
genes
This image shows the coding region in a segment of eukaryotic DNA. Credit: National Human Genome Research Institute

Genetically identical cells do not always behave the same way. According to the accepted theory, the reason are random molecular processes - known as random noise. For decades this view has been underpinned by numerous experiments and theoretical models. Now the system biologists of the University of Zurich have made a momentous discovery: The spatial separation of human cells into a nucleus and cytoplasm creates some kind of passive filter. This filter suppresses the random noise and enables human cells to precisely regulate the activity of individual genes.

Observed more randomness in the nucleus

While the observations of Lucas Pelkmans and his team initially seemed at odds with current text-book knowledge, a second look revealed the missing explanation. During the activation of genes, the genetic information, which has been stored in DNA, becomes transcribed to messenger RNA. "We could perfectly predict the messenger RNA in the cytoplasm and discovered much more randomness within the nucleus" explains Nico Battich, coauthor and PhD student at Institute of Molecular Biology. "One could envision the nucleus to act as a leaky bucket that on the one hand withholds messenger RNA, but on the other hand enables a delayed and even outflow. Thus the activity of genes in the cytoplasm becomes highly robust against during the formation of messenger RNA in the nucleus."

Smallest physiological details made visible

Thanks to their novel method, the Zurich scientists were the first ones who could study that many human genes. They managed to detect every single molecule that is produced by . "Previously one could only study few genes and in many cases these genes had to be genetically modified by researchers" says PhD student Thomas Stoeger. "We realized that the activity of genes strongly differed between single cells, but could at the same time predict the activity for every single cell by visualizing subtle physiological details with microscopic dyes."

The findings of the Zurich scientists impact several fields. "For example, evolutionary biology, where the spatial separation of cells marks a milestone in the emergence of intelligent life. But also biotech-nology, where a precise control over artificial is desirable, and human medicine, if it should become possible to predict which malignant cells will respond to drugs." concludes Prof. Lucas Pelkmans.

Explore further: Gene activity and transcript patterns visualized for the first time in thousands of single cells

More information: Nico Battich, Thomas Stoeger, Lucas Pelkmans. Control of Transcript Variability in Single Mammalian Cells. Cell. December 17, 2015. DOI: 10.1016/j.cell.2015.11.018

Related Stories

DNA protection, inch by inch

July 9, 2015

DNA within reproductive cells is protected through a clever system of find and destroy: new research published in Cell Reports today lifts the veil on how this is done.

Scientists reveal new phase of HIV infection

December 16, 2015

Researchers at the University of Massachusetts Medical School have identified a new life cycle stage in HIV infection, thanks to a novel technique they developed to take images of intact infected cells. They've shown that ...

Rules of communication in the nucleus

August 28, 2015

Nuclear pores in the nuclear membrane do not only control the transport of molecules into and out of the nucleus but also play an important role in gene expression. Researchers at the Max F. Perutz Laboratories (MFPL) of ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...

Microbial communities demonstrate high turnover

January 19, 2018

When Mark Twain famously said "If you don't like the weather in New England, just wait a few minutes," he probably didn't anticipate MIT researchers would apply his remark to their microbial research. But a new study does ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.