Searching for extragalactic neutrinos and dark matter in the Antarctic Ice

September 11, 2015, Yale University
Searching for extragalactic neutrinos and dark matter in the Antarctic Ice

Yale University physicists are part of two international research efforts at the South Pole—the IceCube Collaboration and DM-Ice—that have announced new observations on cosmic neutrinos and the nature of dark matter.

Scientists from the IceCube Collaboration have announced new results on the detection of cosmic neutrinos. Buried 2,450 meters below the surface in the Antarctic ice shield, the IceCube experiment has detected muon neutrinos—subatomic particles that travel through the universe nearly undisturbed by other matter—that originated outside the Earth's galaxy. The observation includes some of the highest-energy neutrinos ever observed from the direction of Earth's Northern Hemisphere.

The results have been published in the journal Physical Review Letters.

Neutrinos are never directly observed. IceCube, a gigaton particle detector located near the Amundsen-Scott South Pole Station, observes the by-products of neutrinos that interact with the Antarctic ice. The detector records about 100,000 neutrinos every year, most of them produced by the interaction of cosmic rays with the Earth's atmosphere. Those interactions also create billions of atmospheric neutrinos. In this study, the researchers identified about 10 high-energy of cosmic origin, possibly produced by massive, exploding stars or black holes elsewhere in the universe.

"The Antarctic Ice at the South Pole is a fantastic place to do experiments," said Reina Maruyama, an assistant professor of physics at Yale and longstanding IceCube collaborator, who was involved in the construction and commissioning of the IceCube detector. "At that depth the ice is clean and transparent for detection of light from particles resulting from neutrino interactions. The ice also provides an effective shield from backgrounds for a search."

Searching for extragalactic neutrinos and dark matter in the Antarctic Ice
Deployment of one of the DM-Ice detectors at the South Pole, with (left to right) Albrecht Karle, Freija Descamps (front), Michael Carson, Perry Sandstrom, and Reina Maruyama.

Maruyama is the spokesperson for the direct detection dark matter experiment DM-Ice. Located with IceCube in the Antarctic ice shield, DM-Ice aims to detect the annual modulation of a weakly interacting massive particle (WIMP) dark matter signal. In a paper presented this week at the international TAUP conference, DM-Ice addresses one of the longest-standing claims about the observation of a dark matter signal in an earlier experiment, called DAMA.

DM-Ice shows that the annual modulation signal is unlikely to be explained by muons created in the atmosphere and related instrumental backgrounds. That finding brings scientists one step closer to understanding the data produced by DAMA.

Explore further: New data from Antarctic detector firms up cosmic neutrino sighting

More information: "Measurement of Muon Annual Modulation and Muon-Induced Phosphorescence in NaI(Tl) Crystals with DM-Ice17."

Related Stories

Recommended for you

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

New quantum memory stores information for hours

February 22, 2018

Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 11, 2015
Dark matter fills 'empty' space and is displaced by the particles of matter which exist in it and move through it.

'The Milky Way's dark matter halo appears to be lopsided'

"the emerging picture of the dark matter halo of the Milky Way is dominantly lopsided in nature."

The Milky Way's halo is not a clump of dark matter traveling along with the Milky Way. The Milky Way's halo is lopsided due to the matter in the Milky Way moving through and displacing the dark matter, analogous to a submarine moving through and displacing the water.

The Milky Way's halo is the state of displacement of the dark matter.

The Milky Way moves through and curves spacetime.

The Milky Way's halo is curved spacetime.

The state of displacement of the dark matter is curved spacetime.

The state of displacement of the dark matter *is* gravity.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.