DREAM challenge uses crowd sourcing to test the state of the art in systems biomedicine

August 10, 2015, European Molecular Biology Laboratory

An international study published in Nature Biotechnology presents the combined results of a 2013 DREAM Challenge: a crowd-sourcing initiative to test how well the effects of a toxic compound can be predicted in different people. The study, which is relevant to public and occupational health, shows that computational methods can be used to predict some toxic effects on populations, although they are not yet sensitive enough to predict such effects in individuals. It also presents algorithms useful for environmental risk assessment.

If we could use computers to predict whether a compound would have a on people, chemical safety testing would be a lot simpler. In a community-based challenge led and organised by scientists from EMBL-EBI, Sage Bionetworks, IBM, the University of North Carolina, and the NIH's National Institute of Environmental Health Sciences (NIEHS) and National Center for Advancing Translational Sciences (NCATS), hundreds of computational biologists from all over the world tried their hand at predicting the toxicities of environmental that had potential .

The organisers used 884 lymphoblastoid that had SNP and gene-expression data available through the 1000 Genomes Project. They measured cellular toxicity of 156 compounds on these cell lines, which represented individuals from nine subpopulations throughout Europe, Africa, Asia and the Americas. Participants were challenged to develop algorithms that could predict toxic response in different individuals and across populations, all based on the structural attributes of the compounds.

"Our partners in the US took 1000 Genomes Project cell lines and treated them with different compounds, so we knew which compound had a toxic effect for each cell line," explains Julio Saez-Rodriguez, former Research Group Leader at EMBL-EBI now at RTWH Aachen University. "So we wanted to know, can you predict that? For a given compound, how will it affect people? For a given person, what compounds will they be sensitive to? This is really important for things like manufacturing, where people might be exposed to a new compound that hasn't been tested yet."

Dozens of teams submitted 179 predictions based on state-of-the-art computational models, and the organisers compared them against the experimental results. In the great tradition of crowd sourcing in bioinformatics, the organisers integrated the results, taking the best of each and forming a new tool to predict toxicity.

Predictions were slightly better than random for individuals, but the combined results could roughly predict population-level response to different compounds. However, improved accuracy is needed before it is possible to predict health risks associated with unknown compounds accurately.

One key benefit of the study is that it offers new methodologies for improvements in some areas of hazard evaluation and assessment.

"This partnership and challenge offer a way to provide both powerful scientific insights and meaningful public health impact by accelerating the pace of toxicity testing," says Allen Dearry, Director of the NIEHS Office of Scientific Information Management. "The winning computational models provide significant advances in our ability to predict toxicity risk for environmental chemicals and set the stage for future data-driven challenges and competitions in environmental health science."

"The ability of the top teams to predict population-level toxicity for unknown compounds - based on similarities in chemical structure to known compounds - far surpassed our anticipations," says Lara Mangravite, Director of Systems Biology at Sage Bionetworks. "This was a true case where the problem provided answers that would otherwise never have been found."

"We had hundreds of people from all over the world participating, from prestigious labs to people who don't even work in biology," says Federica Eduati, who carried out the analyses and is an EMBL interdisciplinary postdoctoral fellow (EIPOD) at EMBL-EBI. "You don't need to be at a top-tier institute to play with great data - if you've got a good idea, you can share it."

Explore further: Protecting the environment by re-thinking death

More information: Eduati, F., et al. (2015). Predicting response of toxic compounds in human populations: a crowdsourcing study. Nature Biotechnology. Published online 10 August 2015; DOI: 10.1038/nbt.3299

Related Stories

Protecting the environment by re-thinking death

August 4, 2015

Scientists first had to re-think death before they could develop a way of testing the potential harm to the environment caused by thousands of chemicals humankind uses each day.

US Tox21 to begin screening 10,000 chemicals

December 7, 2011

A high-speed robotic screening system, aimed at protecting human health by improving how chemicals are tested in the United States, begins today to test 10,000 compounds for potential toxicity. The compounds cover a wide ...

Computing toxic chemicals

July 18, 2013

A new computational method for working out in advance whether a chemical will be toxic will be reporting in a forthcoming issue of the International Journal of Data Mining and Bioinformatics.

Recommended for you

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

Photosynthesis discovery could help next-gen biotechnologies

September 24, 2018

Researchers from The University of Queensland (UQ) and the University of M√ľnster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, ...

How fruits got their eye-catching colors

September 24, 2018

Red plums. Green melons. Purple figs. Ripe fruits come in an array of greens, yellows, oranges, browns, reds and purples. Scientists say they have new evidence that plants owe their rainbow of fruit colors to the different ...

Custom circuits for living cells

September 24, 2018

A team of Caltech researchers has developed a biological toolkit of proteins that can be assembled together in different ways, like Legos, to program new behaviors in cells. As a proof-of-concept, they designed and constructed ...

Birds' voiceboxes are odd ducks

September 24, 2018

Birds sing from the heart. While other four-limbed animals like mammals and reptiles make sounds with voiceboxes in their throats, birds' chirps originate in a unique vocal organ called the syrinx, located in their chests. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.