May 19, 2015

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

Durable, washable and high-performance conductive textiles

(Left) Schematic illustration of the process of preparing conductive cotton yarns via in-situ free radical polymerization (Only grafting of PMANa is illustrated here. Grafting of PAANa follows the same procedures). (Right) As-made PMANa-assisted copper-coated cotton yarns. Credit: Hong Kong PolyU
× close
(Left) Schematic illustration of the process of preparing conductive cotton yarns via in-situ free radical polymerization (Only grafting of PMANa is illustrated here. Grafting of PAANa follows the same procedures). (Right) As-made PMANa-assisted copper-coated cotton yarns. Credit: Hong Kong PolyU

In a new method for preparing electrically conductive textiles, the textile surface is modified with a negatively charged polyelectrolyte poly(methacrylic acid sodium salt) (PMANa) or poly(acrylic acid sodium salt) (PAANa) by in-situ free radical polymerization, and then treated with electroless metal deposition.

The as-fabricated conductive textiles preserve robust mechanical and electrical stability under repeated cycles of rubbing, stretching and washing. They can be integrated into wearable electronics to replace the conventional rigid conductive electrodes and wires.

Special Features and Advantages:

Applications:

Load comments (0)