DNA samples from fungi collections provide key to mushroom 'tree of life'

May 22, 2015, Purdue University
Purdue mycologist Catherine Aime and fellow researchers used DNA from preserved fungi to solve the long-standing mystery of how mushrooms are related to one another. Credit: Purdue University / Tom Campbell

Genetic material from fungi collections at Purdue University and the Royal Botanic Gardens, Kew, helped a team of researchers resolve the mushroom "tree of life," a map of the relationships between key mushroom species and their evolutionary history that scientists have struggled to piece together for more than 200 years.

The group used DNA from frozen, heat-dried and freeze-dried specimens to analyze a dataset of 39 genomes representing most of the known families in Agaricales (ah-gehr-ah-KAY-leez), the order that houses some of the most familiar kinds of mushrooms, including cultivated edible mushrooms, and the deadly destroying angel. High-throughput sequencing technology allowed the scientists to define seven new suborders and the "trunk" of the Agaricales tree, providing a framework for testing hypotheses of the evolution of mushrooms.

"Mycology really is one of the last frontiers in biology," said Catherine Aime, associate professor of mycology, the study of fungi. "We know there are six to 20 times more species of fungi than plants, but we don't really know much about them. People have tried to figure out how mushrooms are related since the time of Linnaeus. It's gratifying to finally solve this mystery."

Fungi are essential to the health of ecosystems, plants and animals. They decompose fallen wood and other organic matter, breaking down material and freeing up nutrients for other organisms. Most land plants rely on to deliver water and other nutrients, and the gut fungi of ruminants such as cows play a vital role in digestion. Most humans also host fungi, which help maintain the balance of our natural flora.

But despite their importance and rich diversity, comparatively little is known about fungi. Many species have "cryptic and unpredictable life histories," Aime said, making them difficult to study. The vast majority of fungi are microscopic with few orders producing visible mushrooms. Some species have complicated lifecycles that have no analogy in other multicellular organisms. Others are extremely rare and represented by only a few records or are impossible to detect with conventional methods.

The elusiveness of fungi is one reason why fungaria - collections of preserved fungal specimens - are so valuable, Aime said. They offer a panorama of the diversity of known and are often the only places where rare species can be studied.

"To go out and recollect many of these specimens from nature would take decades, if not lifetimes," she said.

But until recently, fungaria were of limited use for genetic research because of the technical complexity of genome sequencing and the poor quality of DNA samples obtained from old, dried specimens. Advances in technology, however, enabled Aime and her fellow researchers to use short DNA sequences from fungaria at Purdue and Kew to knit together entire genomes and identify genes that could be used as markers to link related species of mushrooms, resulting in the tree of life.

The tree provides the clearest and most detailed glimpse to date of the fundamental relationships between and when certain types may have evolved. Aime said that the tree suggests the earliest Agaricales were decomposers or biotrophs, organisms that derive their nutrition from other living organisms, a category that includes pathogens.

"We've had this view that organisms became more 'selfish' as they evolved, learning how to take advantage of the system by becoming pathogens," she said. "But it's possible that selfishness happened first, and over time, some of these species coevolved to become more mutualistic."

Aime said that the study also highlighted the importance of fungaria as scientific resources for the genomic age.

"We may be on the verge of a major collections-based revolution," she said. "People think of fungaria as similar to stamp collections - they're not. These collections anchor our concepts of everything in biology and are our only repositories for some dying or possibly already-extinct species. It's extraordinarily important that we try to collect and preserve as many as we can. Future technology may allow us to use those materials in ways we can't even imagine now. We've got to get them before they go."

Explore further: What agriculture can learn from termites and fungi

More information: The paper was published in the Biological Journal of the Linnean Society Wednesday (May 20) and is available for journal subscribers and readers at Purdue at onlinelibrary.wiley.com/doi/10.1111/bij.12553/full

Related Stories

What agriculture can learn from termites and fungi

April 16, 2015

Other living creatures were involved in agriculture way before humans. Termite species in Africa and Asia have been cultivating fungi for consumption for tens of millions of years. And they do it well as the harvests of a ...

Some mushrooms glow, and here's why

March 19, 2015

Did you know that there are mushrooms that actually glow? Aristotle was aware of this intriguing fact more than 2,000 years ago. He also was the first person to ask a simple question in print: Why? Now, researchers reporting ...

Revolutionising the Fungarium - a genomic treasure trove?

July 15, 2013

A DNA sequencing breakthrough has used samples from Kew's Fungarium to show that genetic information can be accessed from even very old samples, holding out the promise of significant discoveries which may have profound impacts ...

Team sequencing 1,000 fungal genomes

November 7, 2011

A 79-year-old collection of fungal cultures and the U.S. Forest Service's Northern Research Station are part of a team that will sequence 1,000 fungal genomes in the next 5 years.

Recommended for you

60 percent of coffee varieties face 'extinction risk'

January 16, 2019

Three in five species of wild coffee are at risk of extinction as a deadly mix of climate change, disease and deforestation puts the future of the world's favourite beverage in jeopardy, new research warned Wednesday.

How stem cells self-organize in the developing embryo

January 16, 2019

Embryonic development is a process of profound physical transformation, one that has challenged researchers for centuries. How do genes and molecules control forces and tissue stiffness to orchestrate the emergence of form ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.