Beyond the lithium ion—a significant step toward a better performing battery

April 17, 2015, University of Illinois at Chicago
This is Jordi Cabana, UIC assistant professor of chemistry. Credit: Photo: Joshua Clark.

The race is on around the world as scientists strive to develop a new generation of batteries that can perform beyond the limits of the current lithium-ion based battery.

Researchers at the University of Illinois at Chicago have taken a significant step toward the development of a battery that could outperform the technology used in electric cars such as the Chevy Volt.

They have shown they can replace the lithium ions, each of which carries a single positive charge, with , which have a plus-two charge, in battery-like chemical reactions, using an electrode with a structure like those in many of today's devices.

"Because magnesium is an ion that carries two positive charges, every time we introduce a magnesium ion in the structure of the we can move twice as many electrons," says Jordi Cabana, UIC assistant professor of chemistry and principal investigator on the study.

"We hope that this work will open a credible design path for a new class of high-voltage, high-energy batteries," Cabana said.

The research is part of the Joint Center for Energy Storage Research, a Department of Energy Innovation Hub led by Argonne National Laboratory, that aims to achieve revolutionary advances in . The study is online in advance of print in the journal Advanced Materials.

Every battery consists of a positive and negative electrode and an electrolyte. The electrodes exchange electrons and ions, which are usually of positive charge. Only the ions flow through the electrolyte, which is an electric insulator so as to force the electrons to flow through the external circuit to power the vehicle or device.

To recharge the battery, the exchange is reversed. But the chemical reaction is not perfectly efficient, which limits how many times the battery can be recharged.

"The more times you can do this back and forth, the more times you will be able to recharge your battery and still get the use of it between charges," Cabana said. "In our case, we want to maximize the number of electrons moved per ion, because ions distort the structure of the when they go in or leave. The more the structure is distorted, the greater the energy cost of moving the back, the harder it becomes to recharge the battery."

"Like a parking garage, there are only so many spaces for the cars," Cabana said. "But you can put a car in each space with more people inside without distorting the structure."

Having established that magnesium can be reversibly inserted into electrode material's structure brings us one step closer to a prototype, said Cabana.

"It's not a battery yet, it's piece of a , but with the same reaction you would find in the final device," said Cabana.

Explore further: New device takes images of lithium battery as it works and recharges

Related Stories

Recommended for you

Fast-moving electrons create current in organic solar cells

January 12, 2018

Researchers at Purdue University have identified the mechanism that allows organic solar cells to create a charge, solving a longstanding puzzle in physics, according to a paper published Friday (Jan. 12) in the journal Science ...

Super-adsorbent MOF captures twice its weight in water

January 11, 2018

Material chemists in the Kingdom of Saudi Arabia have developed a superporous solid made up of a patchwork of metal ions and organic linkers (a metal-organic framework, or MOF) that can suck up to 200% of its own weight in ...

Researchers report first 3-D structure of DHHC enzymes

January 11, 2018

The first three-dimensional structure of DHHC proteins—enzymes involved in many cellular processes, including cancer—explains how they function and may offer a blueprint for designing therapeutic drugs. Researchers have ...

Intoxicatingly light-sensitive

January 11, 2018

ETH chemists have synthesised several variants of THC, the active ingredient in cannabis. Its structure can be altered with light, and the researchers have used this to create a new tool that can be used to more effectively ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.