The taming of the shrew: Scientists decipher the spectrum of CH5+ for the first time

March 19, 2015, University of Cologne
The CH5+ molecular ions were investigated in an ion trap setup such as this. The trap itself is the illuminated cylindrical cavity in the middle of the photo, in which some trap electrodes can be seen. In this trap, several thousand CH5+ ions were stored, cooled, and investigated by a laser. The obtained high-resolution spectra are shown in the inset, as well as a sketch of the CH5+ molecule in motion. Credit: Debora Schiffer/Oskar Asvany, University of Cologne

For the first time ever, a team of scientist from the University of Cologne headed by Professor Stephan Schlemmer succeeded in understanding the spectrum of the highly fluxional molecule CH5+. This insight, gained in collaboration with a Japanese colleague, was made possible by the extreme cooling of this enigmatic molecule and a highly accurate measurement of its vibrational transitions. The results will be presented on March 20, 2015 in Science magazine.

CH5+, formed by adding a proton (H+) to the well-known methane (CH4) molecule, is the prototype of fluxional molecules. In contrast to common molecules, which are depicted as a rigid structure consisting of balls (atoms) and sticks (chemical bonds), the five in CH5+ can move quite freely around the . It is thus constantly in motion, even at an extremely low temperature. Bonds are broken and reformed all the time, and therefore the simple model of balls and sticks does not apply. There has thus been a long debate whether CH5+ has a structure at all.

This extraordinary fluxional behavior is reflected in the spectra of CH5+. Usually such spectra are recorded in the lab to characterize and identify molecules. With the help of suitable , the vibrational spectra can yield information about bond strengths and molecular structure. For CH5+, however, the hitherto known spectra have been so chaotic that not a single of the many hundred vibrational transitions could be understood or assigned. This has been considered one of the last mysteries of molecular physics.

By developing and applying new ion trap experiments, physicists from the University of Cologne have now succeeded in storing a pure sample of CH5+ ions and cooling it down to a temperature close to absolute zero. With the help of a so-called frequency comb, the vibrational transitions could be measured with high accuracy, leading to a reconstruction of the lowest energy levels. This very technical approach was necessary due to the complete lack of theoretical models for this exceptional molecule. The results are thus based only on the experimental data and the fundamental principle of quantum mechanics, according to which the observed vibrational transitions are based on a scheme of discrete energy levels.

The taming of the shrew
This animation illustrates the extreme fluxionality of the CH5+ molecule. The black ball in the middle is the carbon nucleus, and the red and white balls are hydrogen nuclei. The blue clouds symbolize the binding electron pairs. Credit: Dominik Marx, Ruhr-Universität Bochum

Surprisingly, the results are in accordance with the simple notion that the five hydrogen nuclei can move quite freely around the central carbon nucleus, with their distance to it being more or less fixed. Whether this simple picture is valid will have to be tested in further investigations. In any case, the highly accurate data will challenge future theoretical models to interpret the discovered . The entire class of fluxional molecules will profit from these developments.

Explore further: Chemical chameleon tamed: Researchers give floppy molecule a structure through solvent effects

More information: Taming CH5+, the "enfant terrible" of chemical structures, Science, www.sciencemag.org/lookup/doi/ … 1126/science.aaa6935

Related Stories

Uncovering the forbidden side of molecules

September 21, 2014

Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives for extremely precise ...

Wild molecular interactions in a new hydrogen mixture

October 20, 2014

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure increases, the molecules ...

Measuring fundamental constants with methanol

June 14, 2011

Key to the astronomical modeling process by which scientists attempt to understand our universe, is a comprehensive knowledge of the values making up these models. These are generally measured to exceptionally high confidence ...

Unlikely hydrogen bond discovered

March 13, 2015

As with magnets and alternating current, positively charged molecules never aim for one another. Indeed, similarly charged poles are repelled. Nevertheless, a team from the University of Copenhagen's Department of Chemistry ...

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.