The effect of molecular oxygen electron spin on the surface oxidation reaction

March 25, 2015, National Institute for Materials Science
Figure:(a) Control of the O2 spin direction by the defining magnetic field. (b) Spin-dependent O2 adsorption on a Ni(111) film surface. The adsorption probability is changed when the O2 spin direction relative to the majority spin direction of the Ni film (SM) is alternated. No spin-dependent effect is observed for O2 adsorption on a non-magnetic W(110) surface.

Mitsunori Kurahashi, a Chief Researcher of the Nano Characterization Unit, National Institute for Materials Science and Yasushi Yamauchi, a Group Leader in the same unit, presented the first spin-controlled O2 adsorption experiment indicating that the rate of surface oxidation is strongly affected by the electron spin of O2.

O2 on material surfaces is important as the initial step of catalytic reaction, corrosion and oxide film formation. O2 is magnetic due to its derived from two unpaired electrons. The potential effect of the O2 spin on the adsorption process has been pointed out theoretically, but the effect has been unclear because there has been no experimental evidence for it.

Kurahashi and Yamauchi have realized the spin- and alignment-resolved O2 adsorption experiment by combining the quantum-state-selected O2 beam, which has been originally developed by them, with a magnetized Ni film. Their experiment has shown that O2 adsorption probability depends on the orientation of the O2 spin relative to the magnetization of the Ni film. The spin dependency is significant especially at low kinetic energy conditions, and amounts to more than 40% at thermal energy. These results indicate that thermal oxidation rate of ferromagnetic materials such as iron and nickel depends strongly on the spin orientation between O2 and the surface. It has been concluded that the magnetic exchange interaction between O2 and the surface is the main cause of the observed spin dependency. It is well known that solid and/or liquid oxygen exhibit magnetism, but this research presented the first experimental evidence that the magnetic property of O2 has a strong influence on its chemical reactivity.

This research has established a new methodology for analyzing the spin effect in O2-surface interactions. Also, the observed clear spin effect may provide a firm basis to advance the theoretical technique for simulating oxygen adsorption.

Explore further: Japanese researchers realize world's first oxidation reaction with well-defined molecular alignment, spin directions

More information: "Spin Correlation in O2 Chemisorption on Ni(111)." Phys. Rev. Lett. dx.doi.org/10.1103/PhysRevLett.114.016101

Related Stories

UK customers of O2 hit by outage

July 12, 2012

(AP) — British mobile phone company O2 said Thursday that thousands of its customers have been affected by outages on its network.

Recommended for you

New insights into magnetic quantum effects in solids

January 23, 2019

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.