Rediscovering spontaneous light emission

February 3, 2015 by Lynn Yarris, Lawrence Berkeley National Laboratory
Spontaneous light emissions from LEDs can be substantially enhanced when coupled to the right optical antenna, making them comparable to the stimulated emissions from lasers. Credit: Wikipedia

Berkeley Lab researchers have developed a nano-sized optical antenna that can greatly enhance the spontaneous emission of light from atoms, molecules and semiconductor quantum dots. This advance opens the door to light-emitting diodes (LEDs) that can replace lasers for short-range optical communications, including optical interconnects for microchips, plus a host of other potential applications.

"Since the invention of the laser, spontaneous light emission has been looked down upon in favor of stimulated light emission," says Eli Yablonovitch, an electrical engineer with Berkeley Lab's Materials Sciences Division. "However, with the right optical antenna, spontaneous emissions can actually be faster than stimulated emissions."

Yablonovitch, who also holds a faculty appointment with the University of California (UC) Berkeley where he directs the NSF Center for Energy Efficient Electronics Science (E3S), and is a member of the Kavli Energy NanoSciences Institute at Berkeley (Kavli ENSI), led a team that used an external antenna made from gold to effectively boost the spontaneous light emission of a nanorod made from Indium Gallium Arsenide Phosphide (InGaAsP) by 115 times. This is approaching the 200-fold increase that is considered the landmark in speed difference between stimulated and spontaneous emissions. When a 200-fold increase is reached, spontaneous emission rates will exceed those of stimulated emissions.

"With , we believe that spontaneous emission rate enhancements of better than 2,500 times are possible while still maintaining efficiency greater than 50-percent," Yablonovitch says. "Replacing wires on microchips with antenna enhanced LEDs would allow for faster interconnectivity and greater computational power."

Coupling a gold antenna to a InGaAsP nanorod, isolated by TiO2, and embedded in epoxy, greatly enhanced the spontaneous light emission of the InGaAsP. Credit: Eli Yablonovitch, Berkeley Lab

The results of this study are reported in the Proceedings of the National Academy of Sciences (PNAS) in a paper titled "Optical antenna enhanced spontaneous emission." Yablonovitch and UC Berkeley's Ming Wua are the corresponding authors. Co-authors are Michael Eggleston, Kevin Messer and Liming Zhang.

In the world of high technology lasers are ubiquitous, the reigning workhorse for high-speed . Lasers, however, have downsides for communications over short distances, i.e., one meter or less - they consume too much power and typically take up too much space. LEDs would be a much more efficient alternative but have been limited by their rates.

"Spontaneous emission from molecular-sized radiators is slowed by many orders of magnitude because molecules are too small to act as their own antennas," Yablonovitch says. "The key to speeding up these spontaneous emissions is to couple the radiating molecule to a half-wavelength antenna. Even though we've had antennas in radio for 120 years, somehow we've overlooked antennas in optics. Sometimes the great discoveries are looking right at us and waiting."

For their optical antenna, Yablonovitch and his colleagues used an arch antenna configuration. The surface of a square-shaped InGaAsP nanorod was coated with a layer of titanium dioxide to provide isolation between the nanorod and a gold wire that was deposited perpendicularly over the nanorod to create the antenna. The InGaAsP semiconductor that served as the spontaneous light-emitting material is a material already in wide use for infrared laser communication and photo-detectors.

In addition to short distance communication applications, LEDs equipped with optical antennas could also find important use in photodetectors. Optical antennas could also be applied to imaging, bio-sensing and data storage applications.

Explore further: Pyramid nanoscale antennas beam light up and down

Related Stories

Pyramid nanoscale antennas beam light up and down

December 17, 2014

Researchers from FOM Institute AMOLF and Philips Research have designed and fabricated a new type of nanoscale antenna. The new antennas look like pyramids, rather than the more commonly used straight pillars. The pyramid ...

New research could transform high speed optical networks

December 2, 2014

There is an ever growing demand for high speed internet communication systems. New research has shown optical switching technology built on nanoantenna reflectarrays and tunable materials could transform high speed optical ...

Bio-inspired nanoantennas for light emission

July 30, 2012

Just as radio antennas amplify the signals of our mobile phones and televisions, the same principle can apply to light. For the first time, researchers from CNRS and Aix Marseille Université have succeeded in producing ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

How to freeze heat conduction

February 21, 2019

Physicists have discovered a new effect, which makes it possible to create excellent thermal insulators which conduct electricity. Such materials can be used to convert waste heat into electrical energy.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

baudrunner
1 / 5 (1) Feb 03, 2015
How do the residual effects of resonating frequencies at these scales not express some form of galvanic corrosion over time? I wonder at the useful working lifetime of these devices.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.