Long-term storage of digital information in DNA is possible

February 9, 2015

It is evident from samples from mammoths, bears, and other fossils: sequenceable DNA can last up to several hundred thousand years. But one does not necessarily need fossil bones as capsules of silica glass spheres can do the same job, as Robert N. Grass and colleagues from the ETH Zurich demonstrate in their Communication in Angewandte Chemie.

In recent years, there have been several approaches using DNA as a coding language to encode . "However, those approaches are not reliable as they cannot handle errors efficiently and do not suggest how to (physically) store the DNA to maintain its stability over time", Grass and his colleagues explain. Therefore, they combined an error-correcting coding scheme with chemically embedding the synthesized DNA strands in capsules of silica. Releasing the DNA was performed by simple fluoride chemistry, after which it was sequenced and decoded. "The corresponding experiments show that only by the combination of the two concepts could digital information be recovered from DNA stored at the Global Seed Vault (at-18 °C) after over 1 million years", the researchers explain.

In order to simulate various environmental conditions and to compare different storage technologies, the scientists exposed samples of either pure solid-state DNA, DNA on filter cards, in a biopolymeric matrix, or encapsulated in silica spheres to conditions of elevated temperature (60-70 °C) or various humidity levels for a total time of four weeks. Within this time, the state of the DNA was checked in terms of integrity. Encapsulation in silica performed best, and extrapolation revealed that DNA stored by this technology would be sequenced and decoded error-free even after 1 million of years, if stored at temperatures that are found in permafrost.

To demonstrate the applicability of the method to storage of relevant information, the scientists chose two old documents as examples, the Swiss Federal Charter from 1291 and the English translation of the ancient Archimedes Palimpsest on "The Methods of Mechanical Theorems". Pairs of letters of the text file (or generally two bytes of a digital file, as the authors emphasize) were translated in elements of three to eventually obtain sequences of 158 nucleotides. These nucleotides combine the original information with an index as well as elements of redundancy required for Reed–Solomon error correction. Nature stores genetic information to ensure evolution. Humans store to pass on knowledge. For storage times as long as one million years, it could be reasonable to use DNA as a storage medium.

Explore further: DNA used to encode a book and other digital information

More information: Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. and Stark, W. J. (2015), Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes. Angew. Chem. Int. Ed.. doi: 10.1002/anie.201411378

Related Stories

DNA used to encode a book and other digital information

August 17, 2012

(Phys.org) -- A team of researchers in the US has successfully encoded a 5.27 megabit book using DNA microchips, and they then read the book using DNA sequencing. Their experiments show that DNA could be used for long-term ...

Researchers make DNA storage a reality

January 23, 2013

Researchers at the EMBL-European Bioinformatics Institute (EMBL-EBI) have created a way to store data in the form of DNA – a material that lasts for tens of thousands of years. The new method, published today in the journal ...

Responsive material could be the 'golden ticket' of sensing

January 7, 2015

Researchers from the University of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to ...

Damaged DNA amplified

January 15, 2015

For the first time, researchers have succeeded in amplifying genes altered by activities such as smoking—with changes that can lead to lung cancer. As the amplified genes retain the altered information, this marks an important ...

Recommended for you

New technology offers fast peptide synthesis

February 27, 2017

Manufacturing small proteins known as peptides is usually very time-consuming, which has slowed development of new peptide drugs for diseases such as cancer, diabetes, and bacterial infections.

Polymer additive could revolutionize plastics recycling

February 24, 2017

When Geoffrey Coates, the Tisch University Professor of Chemistry and Chemical Biology, gives a talk about plastics and recycling, he usually opens with this question: What percentage of the 78 million tons of plastic used ...

Electrons use DNA like a wire for signaling DNA replication

February 24, 2017

In the early 1990s, Jacqueline Barton, the John G. Kirkwood and Arthur A. Noyes Professor of Chemistry at Caltech, discovered an unexpected property of DNA—that it can act like an electrical wire to transfer electrons quickly ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.