Uniform nanowire arrays for science and manufacturing

December 3, 2014 by Kris Bertness
Scanning electron microscope image of an array of GaN nanowires with a spacing of 800 nm.

Defect-free nanowires with diameters in the range of 100 nanometers (nm) hold significant promise for numerous in-demand applications including printable transistors for flexible electronics, high-efficiency light-emitting diodes, resonator-based mass sensors, and integrated, near-field optoelectronic tips for advanced scanning tip microscopy.

That promise cannot be realized, however, unless the wires can be fabricated in large uniform arrays using methods compatible with high-volume manufacture. To date, that has not been possible for arbitrary spacings in ultra-high vacuum growth.

Now NIST's PML's Optoelectronic Manufacturing Group has achieved a breakthrough: Reproducible synthesis of gallium-nitride nanowires with controlled size and location on silicon substrates.

The result was achieved by improving selective wire-growth processes to produce one nanowire of controlled diameter per mask-grid opening over a range of diameters from 100 nm to 200 nm. Ordered arrays with a variety of spacings were fabricated.

In the near term, the research will be used to create a wafer-scale arrays of probes for devices that examine the surface and near-surface properties of materials, to optimize nanowire LEDs, and to produce with controlled diameter for a collaborative project involving printable for millimeter-wave reconfigurable antennae.

Explore further: Controlling photoluminescence with silicon nanophotonics for better devices

Related Stories

Team grows uniform nanowires

November 10, 2014

A researcher from Missouri University of Science and Technology has developed a new way to grow nanowire arrays with a determined diameter, length and uniform consistency. This approach to growing nanomaterials will improve ...

Nanowire made of diverse materials may become marketable

October 18, 2013

A South Korean joint industrial-academic research team has developed the technology to put forward the commercialization of nanowire that is only a few nanometers wide. It is expected to be applied in various fields such ...

Recommended for you

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.