Thin-film hybrid oxide-organic microprocessor

December 10, 2014 by Hanne Degans, IMEC

Holst Centre, imec and their partner Evonik have realized a general-purpose 8-bit microprocessor, manufactured using complementary thin-film transistors (TFTs) processed at temperatures compatible with plastic foil substrates (250°C). The new "hybrid" technology integrates two types of semiconductors—metal-oxide for n-type TFTs (iXsenic, Evonik) and organic molecules for p-type TFTs—in a CMOS microprocessor circuit, operating at unprecedented for TFT technologies speed—clock frequency 2.1kHz. The breakthrough results were published online in Scientific Reports, an open access journal from the publisher of Nature.

Low temperature thin-film electronics are based on organic and metal-oxide . They have the potential to be produced in a cost effective way using large-area manufacturing processes on plastic foils. Thin-film electronics are, therefore, attractive alternatives for silicon chips in simple IC applications, such as (RFID) and near field communication (NFC) tags and sensors for smart food packaging, and in large-area electronic applications, such as flexible displays, sensor arrays and OLED lamps. Holst Centre's (imec and TNO) research into thin-film electronics aims at developing a robust, foil-compatible, high performance technology platform, which is key to making these new applications become a reality.

The novel 8-bit microprocessor performs at a clock frequency of 2.1 kHz. It consists of two separate chips: a processor core chip and a general-purpose instruction generator (P2ROM). For the processor core chip, a complementary hybrid organic-oxide technology was used (p:n ratio 3:1). The n-type transistors are 250°C solution-processed metal-oxide TFTs with typically high charge carrier mobility (2 cm2/Vs). The p-type transistors are small molecule organic TFTs with mobility of up to 1 cm2/Vs.

The complementary logic allows for a more complex and complete standard cell library, including additional buffering in the core and the implementation of a mirror adder in the critical path. These optimizations have resulted in a high maximum clock frequency of 2.1kHz. The general-purpose instruction generator or P2ROM is a one-time programmable ROM memory configured by means of inkjet printing, using a conductive silver ink. The chip is divided into a hybrid complementary part and a unipolar n-TFT part and is capable of operating at frequencies up to 650 Hz, at an operational voltage of Vdd=10V.

Explore further: Formation of organic thin-film transistors through room-temperature printing

Related Stories

Move over, silicon, there's a new circuit in town

June 17, 2014

(Phys.org) —When it comes to electronics, silicon will now have to share the spotlight. In a paper recently published in Nature Communications, researchers from the USC Viterbi School of Engineering describe how they have ...

A cool approach to flexible electronics

July 10, 2014

A nanoparticle ink that can be used for printing electronics without high-temperature annealing presents a possible profitable approach for manufacturing flexible electronics.

Imec unveils fully organic imager for X-ray applications

June 13, 2013

At this week's International Image Sensor Workshop (IISW 2013, Snowbird, Utah, June 12-16 2013), imec and Holst Centre presented a large-area fully-organic photodetector array fabricated on a flexible substrate. The imager ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.