Physicists advance understanding of transition metal oxides used in electronics

December 18, 2014, University of Arkansas

An international team of scientists, led by physicists at the University of Arkansas, has characterized the electronic and magnetic structure in artificially synthesized materials called transition metal oxides.

The findings advance the fundamental understanding of , which are commonly used for their myriad applications in electronics.

The team published its findings on Wednesday, Dec. 17, in Nature Communications, an online journal published by the journal Nature, in a paper titled "Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites."

"Our study provides insight into what makes this group of very structurally similar behave in such disparate ways," said Derek Meyers, a doctoral student in physics at the University of Arkansas. "Most of the research on oxides in the last 20 years has focused on common oxides featuring iron, copper and cobalt. In this paper we analyzed more rare transition metal oxides containing rhodium and iridium. We are bridging the gap, allowing what we know about the abundant transition metal oxides to be translated to the less-studied variants."

The team found that changing the transition metal ions from cobalt to rhodium to iridium, in otherwise identical chemical compounds, resulted in the emergence of a Kondo effect, a key concept in in understanding the behavior of metallic systems with strongly interacting electrons.

"We found the microscopic mechanism which causes significant changes to the electronic and magnetic behaviors as you move down different rows on the periodic table," Meyers said.

Meyers, a Doctoral Academy Fellow at the U of A, was the lead researcher under the supervision of Jak Chakhalian, a professor of physics at the university and director of the Laboratory for Artificial Quantum Materials. Meyers and Srimanta Middey, a postdoctoral research associate at the university, analyzed the data.

Chakhalian's lab acquired the transition from the Texas Materials Institute at the University of Texas in Austin, in close collaboration with materials scientists John Goodenough; J.G. Cheng, who is also with the Chinese Academy of Sciences; and J.S. Zhou.

Explore further: X-ray resonance scattering can reveal the magnetic properties of transition metal oxides made out of heavy elements

More information: "Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites." Nature Communications 5, Article number: 5818. DOI: 10.1038/ncomms6818

Related Stories

The finer details of rust

December 4, 2014

Scientists at the Vienna University of Technology have been studying the behavior of iron oxide surfaces. The atomic structure of iron oxide, which had been assumed to be well-established, turned out to be wrong. The behavior ...

'Exotic' material is like a switch when super thin

April 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance and other ...

Discovery furthers understanding of superconductivity

May 28, 2013

(Phys.org) —Physicists at the University of Arkansas have collaborated with scientists in the United States and Asia to discover that a crucial ingredient of high-temperature superconductivity could be found in an entirely ...

Recommended for you

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

Toward ultrafast spintronics

January 21, 2019

Electronics have advanced through continuous improvements in microprocessor technology since the 1960s. However, this process of refinement is projected to stall in the near future due to constraints imposed by the laws of ...

New thermoelectric material delivers record performance

January 17, 2019

Taking advantage of recent advances in using theoretical calculations to predict the properties of new materials, researchers reported Thursday the discovery of a new class of half-Heusler thermoelectric compounds, including ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.