Researchers create 'green' process to reduce molecular switching waste

December 15, 2014, Dartmouth College
Ivan Aprahamian, an associate professor of chemistry at Dartmouth College. Credit: Dartmouth College

Dartmouth researchers have found a solution using visible light to reduce waste produced in chemically activated molecular switches, opening the way for industrial applications of nanotechnology ranging from anti-cancer drug delivery to LCD displays and molecular motors.

The study appears in the Journal of the American Chemical Society.

Chemically activated molecular switches are molecules that can shift controllably between two stable states and that can be reversibly switched—like a light switch—to turn different functions "on" and "off." For example, light-activated switches can fine-tune , so they target only cancer cells and not healthy ones, thereby eliminating the side effects of chemotherapy.

But such switches typically generate waste and side products that are problematic. One way of making these processes cleaner is by using light energy, similar to how photosynthesis operates in nature. In their experiments, the researchers show that a merocyanine-based photoacid derivative can effectively be used in a switching process that is fast, efficient and forms no wastes.

"We address a bottleneck that's been hampering the field for decades—what to do with the accumulated salts and side products when activating such switches," says co-author Ivan Aprahamian, an associate professor of chemistry. "Acids, bases and other compounds need to be constantly added to the mix to make sure the system can be switched, but within a few cycles there is so much waste that it interferes with the switching process. We found a neat solution by coupling an efficient photoacid to our chemically activated hydrazone switch. We showed the system can be efficiently modulated more than 100 times with no accumulation of waste or degradation. We are using to accomplish this, so in reality we are converting into a chemical output, similar to what happens in photosynthesis. You can look at this as a 'green' process that closes the loop in a nanotech-related process, and it will reduce waste in future of molecular switches."

Explore further: Researchers develop molecular switch that changes liquid crystal colors

Related Stories

Dartmouth researchers create new nano switch

February 24, 2010

(PhysOrg.com) -- Dartmouth researcher Ivan Aprahamian and his team have developed a new molecular switch that changes its configuration as a function of the pH of the environment. This discovery might someday help lead to ...

Electronic switches on the molecular scale

November 25, 2014

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show promise for future ...

Photopharmacology: Optical control of insulin secretion

October 14, 2014

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have chemically modified an anti-diabetic agent so as to make its action dependent on light. The resulting prototype compound, termed JB253, induces release of ...

Recommended for you

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.