Most of Earth's carbon may be hidden in the planet's inner core, new model suggests

December 1, 2014, University of Michigan
Clouds over Australia are shown. Credit: NASA

As much as two-thirds of Earth's carbon may be hidden in the inner core, making it the planet's largest carbon reservoir, according to a new model that even its backers acknowledge is "provocative and speculative."

In a paper scheduled for online publication in the Proceedings of the National Academy of Sciences this week, University of Michigan researchers and their colleagues suggest that iron carbide, Fe7C3, provides a good match for the density and sound velocities of Earth's inner under the relevant conditions.

The model, if correct, could help resolve observations that have troubled researchers for decades, according to authors of the PNAS paper.

The first author is Bin Chen, who did much of the work at the University of Michigan before taking a faculty position at the University of Hawaii at Manoa. The principal investigator of the project, Jie Li, is an associate professor in U-M's Department of Earth and Environmental Sciences.

"The model of a carbide inner core is compatible with existing cosmochemical, geochemical and petrological constraints, but this provocative and speculative hypothesis still requires further testing," Li said. "Should it hold up to various tests, the model would imply that as much as two-thirds of the planet's carbon is hidden in its center sphere, making it the largest reservoir of carbon on Earth."

It is now widely accepted that Earth's inner core consists of crystalline iron alloyed with a small amount of nickel and some lighter elements. However, seismic waves called S waves travel through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures.

Some researchers have attributed the S-wave velocities to the presence of liquid, calling into question the solidity of the inner core. In recent years, the presence of various light elements—including sulfur, carbon, silicon, oxygen and hydrogen—has been proposed to account for the density deficit of Earth's core.

Iron carbide has recently emerged as a leading candidate component of the inner core. In the PNAS paper, the researchers conclude that the presence of iron carbide could explain the anomalously slow S waves, thus eliminating the need to invoke partial melting.

"This model challenges the conventional view that the Earth is highly depleted in , and therefore bears on our understanding of Earth's accretion and early differentiation," the PNAS authors wrote.

In their study, the researchers used a variety of experimental techniques to obtain sound velocities for up to core pressures. In addition, they detected the anomalous effect of spin transition of iron on sound velocities.

They used diamond-anvil cell techniques in combination with a suite of advanced synchrotron methods including nuclear resonant inelastic X-ray scattering, synchrotron Mössbauser spectroscopy and X-ray emission spectroscopy.

Explore further: Iron in the Earth's core weakens before melting

More information: Hidden carbon in Earth's inner core revealed by shear softening in dense Fe7C3 , PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1411154111

Related Stories

Iron in the Earth's core weakens before melting

October 10, 2013

The iron in the Earth's inner core weakens dramatically before it melts, explaining the unusual properties that exist in the moon-sized solid centre of our planet that have, up until now, been difficult to understand.

Doubling estimates of light elements in the Earth's core

March 5, 2013

The inner core of the Earth is the remotest area on the globe, mostly impossible to study directly. It is an area of the planet that experiences both extremely high pressure ranging from 3,300,000 to 3,600,000 times atmospheric ...

Earth's outer core deprived of oxygen: study

November 23, 2011

The composition of the Earth's core remains a mystery. Scientists know that the liquid outer core consists mainly of iron, but it is believed that small amounts of some other elements are present as well. Oxygen is the most ...

Scientists simulate Earth's creation to solve core problem

November 19, 2012

(Phys.org)—Using computer simulations, researchers from the University of California, Davis, and the Chinese Academy of Sciences in Beijing have helped to solve a mystery that scientists have puzzled over since the early ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Graeme
not rated yet Dec 02, 2014
well the surface of the inner core would be in equibrium with the liquid outer core. This in turn would exchange atoms with the mantle. Doing experiments with mantle samples and hypothetical core material should give the clues as to the ratios of elements that would be in equilibrium. I still suspect the hydrogen in water will be under suitable high pressure to react with iron in the core. Carbon dioxide and diamond may be pressent also, but there is a lot less of that compared to water in the earth. So core being iron hydride still is a strong idea.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.