Using radio waves to control the density in a fusion plasma

October 28, 2014
Using radio waves to control the density in a fusion plasma
Supercomputer simulation shows turbulent density fluctuations in the core of the Alcator C-Mod tokamak during strong electron heating. Credit: D. R. Ernst, MIT

Recent fusion experiments on the DIII-D tokamak at General Atomics (San Diego) and the Alcator C-Mod tokamak at MIT (Cambridge, Massachusetts), show that beaming microwaves into the center of the plasma can be used to control the density in the center of the plasma, where a fusion reactor would produce most of its power. Several megawatts of microwaves mimic the way fusion reactions would supply heat to plasma electrons to keep the "fusion burn" going.

The new experiments reveal that turbulent density fluctuations in the inner core intensify when most of the heat goes to electrons instead of plasma ions, as would happen in the center of a self-sustaining reaction. Supercomputer simulations closely reproduce the experiments, showing that the electrons become more turbulent as they are more strongly heated, and this transports both particles and heat out of the plasma.

"We are beginning to uncover the fundamental mechanisms that control the density, under conditions relevant to a real fusion reactor," says Dr. Darin Ernst, a physicist at the Massachusetts Institute of Technology, who led the experiments and simulations, together with co-leaders Dr. Keith Burrell (General Atomics), Dr. Walter Guttenfelder (Princeton Plasma Physics Laboratory), and Dr. Terry Rhodes (UCLA).

The experiments were conducted by a team of researchers as part of a National Fusion Science Campaign. This new program enables research on one fusion experiment to be expanded to device another with complementary instrumentation and capabilities. "The National Campaign has increased the impact of our work, with added benefit to the fusion program," says Dr. Ernst. "Comparing Alcator C-Mod and DIII-D tests our new predictions that particle collisions strongly reduce this type of . The collision rate varies by a factor of ten between the two machines," says Ernst.

The experiments and simulations suggest that trapped electron turbulence becomes more important under the conditions expected in self-heated fusion reactors. The structure of the simulated turbulence during the electron heating is shown at right. The simulations closely matched detailed measurements of the actual turbulence in the 20cm diameter inner core. "We discovered sheared flows also drive turbulence in the inner plasma core, but as we approached conditions where mainly the electrons are heated, the usual plasma flow is reduced and pure trapped electron turbulence begins to dominate," says Dr. Guttenfelder, who did the for the DIII-D experiments, along with Dr. Andris Dimits (LLNL). Measurements revealed a band of fluctuations, separated by a constant frequency interval, like harmonics in a musical note. "These new coherent fluctuations appear to be consistent with the basic trapped electron instability that grows stronger during heating, " says Dr. Rhodes.

In a self-heated , fusion reactions produce very energetic alpha particles that collide with electrons as they move through the . The collisions heat the electrons by imparting random thermal motion. The electrons in turn collide with and heat cooler deuterium and tritium fuel ions to fusion temperatures. However, turbulent eddies can swirl the particles and energy away from the hot core toward the cooler edge, where they eventually are lost to the walls of the chamber.

These experiments are part of a larger systematic study of turbulent energy and particle loss under fusion-relevant conditions. "It's important to understand what drives the turbulence, and how it can be controlled and minimized, to find new ways of operating tokamaks that exploit that knowledge," says Dr. Burrell. By comparing detailed turbulence measurements with simulations, researchers hope to understand how turbulence controls the core temperature under fusion conditions.

Explore further: Device diminishes instabilities that can damage the interior of fusion facilities

More information: Abstract: CO5.00002 , Controlling DIII-D QH-Mode Particle and Electron Thermal Transport with ECH , Speaker: D. R. Ernst (MIT) 2:12 PM–2:24 PM, Monday, October 27, 2014, Galerie 2/3

Related Stories

Understanding the turbulence in plasmas

April 29, 2013

A longstanding joke holds that practical fusion power is about 20 years away—and always will be. One simple phenomenon explains why practical, self-sustaining fusion reactions have proved difficult to achieve: Turbulence ...

Tokamak experiments come clean about impurity transport

November 10, 2011

A fusion reactor operates best when the hot plasma inside it consists only of fusion fuel (hydrogen's heavy isotopes, deuterium and tritium), much as a car runs best with a clean engine. But fusion fuel reactions at the heart ...

Jaguar supercomputer harnesses heat for fusion energy

April 18, 2011

University of California-Irvine researcher Zhihong Lin is using the Jaguar supercomputer at Oak Ridge National Laboratory to study fusion reactions, which produce helium from hydrogen and release energy in the process, in ...

Recommended for you

Quantum data takes a ride on sound waves

September 22, 2017

Yale scientists have created a simple-to-produce device that uses sound waves to store quantum information and convert it from one form to another, all inside a single, integrated chip.

A way to measure and control phonons

September 22, 2017

(—A team of researchers with the University of Vienna in Austria and Delft University of Technology in the Netherlands has developed a technique using photons for controlling and measuring phonons. In their paper ...

Gravitational waves may oscillate, just like neutrinos

September 21, 2017

(—Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and ...

Detecting cosmic rays from a galaxy far, far away

September 21, 2017

In an article published today in the journal Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy. The article, titled "Observation of ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Oct 28, 2014
This is new ?? For the entire half-century of fusion research, there have been ample, powerful microwave sources. They're just now figuring out that microwaves might be essential ? Sounds like fusion researchers have Not been thinking outside the box....Again.
Oct 28, 2014
This comment has been removed by a moderator.
5 / 5 (2) Oct 28, 2014
@JIMBO I think this has gone from conjecture to high-resolution modeling. That's the significant difference. Don't fall in the dunning-kruger trap.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.