Jaguar supercomputer harnesses heat for fusion energy

April 18, 2011 By Eric Gedenk
Depending on its size, this sort of simulation runs on between 5,000 and 50,000 of Jaguar's 224,256 processing cores.

University of California-Irvine researcher Zhihong Lin is using the Jaguar supercomputer at Oak Ridge National Laboratory to study fusion reactions, which produce helium from hydrogen and release energy in the process, in hopes of igniting ITER, an experimental fusion reactor being built in southern France.

In 2010, the team of Lin and General Atomics researcher Ron Waltz was awarded three years of processor time on the Oak Ridge Leadership Computing Facility's Cray XT5 Jaguar—a supercomputer capable of more than two quadrillion calculations per second—by the Department of Energy's INCITE, program.

simulations began using the principles of magnetohydrodynamics which treat plasma as a fluid much like air or water. This study can account for a macroscopic response of the plasma, called Alfvén or MHD waves.

Lin played a key role in developing one of two computer programs that his team uses to calculate plasma particles' motion using supercomputers in hopes of painting a more complete picture of turbulence in a fusion plasma. The team spent 2010 making sure they would be able to simulate charged particles interacting with MHD waves in the plasma. The goal for 2011 is to calculate the evolution of charged particles travelling in a doughnut-shaped reactor, called a tokamak, and observe how and where MHD waves transport energetic particles. By 2012 Lin expects the model to be fully developed—simultaneously simulating all turbulent interactions between the particles in a .

The computer programs are applied to the same simulations using complementary approaches. One creates three-dimensional grids to sample plasma turbulence and associated random particle motion. Interactions between plasma particles and electromagnetic fields can be resolved in great detail. Depending on its size, this sort of simulation runs on between 5,000 and 50,000 of Jaguar's 224,256 processing cores.

Another program tracks particles in the phase space to get information about their three-dimensional motion in the ITER machine. This simulation uses between 5,000 and 10,000 cores. These simulations provide researchers with insights into the reaction between deuterium and tritium in a superheated plasma. In a fusion reaction, deuterium and tritium fuel ions occasionally smash into one another and fuse to create energetic neutrons and ions. To sustain a fusion reaction, this phenomenon continues many times over as charged particles are brought together by strong magnetic fields in the reactor.

Turbulence can threaten the fusion reaction by allowing to travel to the tokamak walls, causing the plasma to cool. Lin's team is using simulations to develop ways of applying electromagnetic forces to overcome turbulence, heating the reactor, rather than cooling it.

Explore further: Imaging of Alfven waves and fast ions in a fusion plasma

Related Stories

Imaging of Alfven waves and fast ions in a fusion plasma

November 8, 2010

Fusion plasmas in the laboratory typically reach 100 million degrees. These high temperatures are required to ignite the hydrogen plasma and maintain the fusion burn by the production of high-energy alpha particles. One challenge ...

Wave power could contain fusion plasma

January 10, 2011

Researchers at the University of Warwick’s Centre for Fusion Space and Astrophysics and the UK Atomic Energy Authority’s Culham Centre for Fusion Energy may have found a way to channel the flux and fury of a nuclear ...

Another high-definition plasma

February 24, 2011

( -- The sight of an aurora evokes feelings of mystery and awe in the weekend star gazer and scientist alike. The stargazer may ponder the vastness of our universe or how such vivid color can be created in space, ...

ORNL, Princeton partners in five-year fusion project

September 14, 2005

Knowledge gained by Oak Ridge National Laboratory researchers and colleagues through an initiative to begin this fall could answer several long-standing questions and give the United States a competitive edge in the design ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.