Researchers create materials that reproduce cephalopods' ability to quickly change colors and textures

September 17, 2014 by David L. Chandler, Massachusetts Institute of Technology
Images show textures (top) and fluorescent light (bottom) produced by the new synthetic elastomer material that can mimic some of the camouflage abilities of octopuses and other cephalopods.

Cephalopods, which include octopuses, squid, and cuttlefish, are among nature's most skillful camouflage artists, able to change both the color and texture of their skin within seconds to blend into their surroundings—a capability that engineers have long struggled to duplicate in synthetic materials. Now a team of researchers has come closer than ever to achieving that goal, creating a flexible material that can change its color or fluorescence and its texture at the same time, on demand, by remote control.

The results of their research have been published in the journal Nature Communications, in a paper by a team led by MIT Assistant Professor of Mechanical Engineering Xuanhe Zhao and Duke University Professor of Chemistry Stephen Craig.

Zhao, who joined the MIT faculty from Duke this month and holds a joint appointment with the Department of Civil and Environmental Engineering, says the new material is essentially a layer of electro-active that could be quite easily adapted to standard manufacturing processes and uses readily available materials. This could make it a more economical dynamic camouflage material than others that are assembled from individually manufactured electronic modules.

While its most immediate applications are likely to be military, Zhao says the same basic approach could eventually lead to production of large, flexible display screens and anti-fouling coatings for ships.

In its initial proof-of-concept demonstrations, the material can be configured to respond with changes in both texture and fluorescence, or texture and color. In addition, while the present version can produce a limited range of colors, there is no reason that the range of the palette cannot be increased, Craig says.

Learning from nature

Cephalopods achieve their remarkable color changes using muscles that can alter the shapes of tiny pigment sacs within the skin—for example, contracting to change a barely visible round blob of color into a wide, flattened shape that is clearly seen. "In a relaxed state, it is very small," Zhao says, but when the muscles contract, "they stretch that ball into a pancake, and use that to change color. The muscle contraction also varies skin textures, for example, from smooth to bumpy." Octopuses use this mechanism both for camouflage and for signaling, he says, adding, "We got inspired by this idea, from this wonderful creature."

Researchers create materials that reproduce cephalopods’ ability to quickly change colors and textures. Credit: Melanie Gonick/MIT

The new synthetic material is a form of elastomer, a flexible, stretchable polymer. "It changes its fluorescence and texture together, in response to a change in voltage applied to it—essentially, changing at the flip of a switch," says Qiming Wang, an MIT postdoc and the first author of the paper.

"We harnessed a physical phenomenon that we discovered in 2011, that applying voltage can dynamically change surface textures of elastomers," Zhao says.

"The texturing and deformation of the elastomer further activates special mechanically responsive molecules embedded in the elastomer, which causes it to fluoresce or change color in response to voltage changes," Craig adds. "Once you release the voltage, both the elastomer and the molecules return to their relaxed state—like the cephalopod skin with muscles relaxed."

Multiple uses for quick changes

While troops and vehicles often move from one environment to another, they are presently limited to fixed camouflage patterns that might be effective in one environment but stick out like a sore thumb in another. Using a system like this new elastomer, Zhao suggests, either on uniforms or on vehicles, could allow the camouflage patterns to constantly change in response to the surroundings.

"The U.S. military spends millions developing different kinds of camouflage patterns, but they are all static," Zhao says. "Modern warfare requires troops to deploy in many different environments during single missions. This system could potentially allow dynamic camouflage in different environments."

Another important potential application, Zhao says, is for an anti-fouling coating on the hulls of ships, where microbes and creatures such as barnacles can accumulate and significantly degrade the efficiency of the ship's propulsion. Earlier experiments have shown that even a brief change in the surface texture, from the smooth surface needed for fast movement to a rough, bumpy texture, can quickly remove more than 90 percent of the biological fouling.

Zhenan Bao, a professor of chemical engineering at Stanford University who was not involved in this research, says this is "inspiring work" and a "clever idea." She adds, "I think the significant part is to combine the ability of mechanochemical response with electrical addressing so that they can induce fluorescence patterns by demand, reversibly." Bao cautions that the researchers still face one significant challenge: "Currently they can only induce one kind of pattern in each type of material. It will be important to be able to change the patterns."

Explore further: Process makes polymers truly plastic

More information: "Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning." Qiming Wang, Gregory R. Gossweiler, Stephen L. Craig & Xuanhe Zhao. Nature Communications 5, Article number: 4899 DOI: 10.1038/ncomms5899

Related Stories

Process makes polymers truly plastic

March 15, 2012

Just as a chameleon changes its color to blend in with its environment, Duke University engineers have demonstrated for the first time that they can alter the texture of plastics on demand, for example, switching back and ...

Studying 'squid skin' to create new camouflage patterns

May 19, 2011

As an octopus, a squid, or a cuttlefish moves around a reef in the ocean, it instantly camouflages itself against the background. Known as cephalopods, these animals have the extraordinary ability to conceal themselves from ...

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.