'Greener,' low-cost transistor heralds advance in flexible electronics

September 24, 2014
'Greener,' low-cost transistor heralds advance in flexible electronics

As tech company LG demonstrated this summer with the unveiling of its 18-inch flexible screen, the next generation of roll-up displays is tantalizingly close. Researchers are now reporting in the journal ACS Nano a new, inexpensive and simple way to make transparent, flexible transistors—the building blocks of electronics—that could help bring roll-up smartphones with see-through displays and other bendable gadgets to consumers in just a few years.

Yang Yang and colleagues note that transistors are traditionally made in a multi-step photolithography process, which uses light to print a pattern onto a glass or wafer. Not only is this approach costly, it also involves a number of . Finding a greener, less-expensive alternative has been a challenge. Recently, new processing techniques using metal oxide semiconductors have attracted attention, but the resulting devices are lacking in flexibility or other essential traits. Yang's team wanted to address these challenges.

The researchers developed inks that create patterns on ultrathin, transparent devices when exposed to light. This light sensitivity precludes the need for harsh substances or high temperatures. "The main application of our transistors is for next-generation displays, like OLED or LCD displays," said Yang. "Our are designed for simple manufacturing. We believe this is an important step toward making widely accessible."

Explore further: A cool approach to flexible electronics

More information: "Direct Light Pattern Integration of Low-Temperature Solution-Processed All-Oxide Flexible Electronics" ACS Nano, 2014, 8 (9), pp 9680–9686
DOI: 10.1021/nn504420r

The rise of solution-processed electronics, together with their processing methods and materials, provides unique opportunities to achieve low-cost and low-temperature roll-to-roll printing of non-Si-based devices. Here, we demonstrate a wafer-scale direct light-patterned, fully transparent, all-solution-processed, and layer-by-layer-integrated electronic device. The deep ultraviolet irradiation of specially designed metal oxide gel films can generate fine-patterned shapes of ∼3 μm, which easily manifest their intrinsic properties at low-temperature annealing. This direct light patterning can be easily applied to the 4 in. wafer scale and diverse pattern shapes and provides feasibility for integrated circuit applications through the penetration of the deep ultraviolet range on the quartz mask. With this approach, we successfully fabricate all-oxide-based high-performance transparent thin-film transistors on flexible polymer substrates.

Related Stories

A cool approach to flexible electronics

July 10, 2014

A nanoparticle ink that can be used for printing electronics without high-temperature annealing presents a possible profitable approach for manufacturing flexible electronics.

First graphene-based flexible display produced

September 5, 2014

(Phys.org) —A flexible display incorporating graphene in its pixels' electronics has been successfully demonstrated by the Cambridge Graphene Centre and Plastic Logic, the first time graphene has been used in a transistor-based ...

Roll-up TV is 18-incher, expect 60-inch plus by 2017

July 10, 2014

Mention "new curved or flexible displays" and that is quite enough to get all the media dogs barking. Thursday's news went further. LG Display announced two new 18-inch OLED panels: the first is a transparent display, while ...

Toward 'invisible electronics' and transparent displays

February 5, 2009

Researchers in California are reporting an advance toward the long-sought goal of "invisible electronics" and transparent displays, which can be highly desirable for heads-up displays, wind-shield displays, and electronic ...

Recommended for you

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.