Toward 'invisible electronics' and transparent displays

February 5, 2009

Researchers in California are reporting an advance toward the long-sought goal of "invisible electronics" and transparent displays, which can be highly desirable for heads-up displays, wind-shield displays, and electronic paper.

The scientists describe development of tiny, transparent electronic circuits — the most powerful of their kind to date — that could pave the way for transparent electronics and other futuristic applications, including flexible electronic newspapers and wearable clothing displays. Their study appeared in the Jan. 27 issue of ACS Nano, a monthly journal.

In the new study, Chongwu Zhou and colleagues point out that although scientists have previously developed nano-sized transparent circuits, previous versions are limited to a handful of materials that are transparent semiconductors.

The researchers describe the development of transparent thin-film transistors (TTFTs) composed of highly aligned, single-walled carbon nanotubes — each about 1/50,000th the width of a single human hair. They are transparent, flexible, and perform well. Laboratory experiments showed that TTFTs could be easily applied to glass and plastic surfaces, and showed promise in other ways for a range of possible practical applications.

Article: "Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates," ACS Nano

Provided by ACS

Explore further: Side-by-side deposition of atomically flat semiconductor sheets enhances solar cell conversion efficiency

Related Stories

S. Korean court says worker's rare disease linked to Samsung

August 30, 2017

South Korea's Supreme Court said a former worker in a Samsung LCD factory who was diagnosed with multiple sclerosis should be recognized as having an occupationally caused disease, overturning lower court verdicts that held ...

Recommended for you

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Feb 06, 2009
very old idea.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.