New research points to graphene as a flexible, low-cost touchscreen solution

September 26, 2014

New research published today in the journal Advanced Functional Materials suggests that graphene-treated nanowires could soon replace current touchscreen technology, significantly reducing production costs and allowing for more affordable, flexible displays.

The majority of today's touchscreen devices, such as tablets and smartphones are made using (ITO) which is both expensive and inflexible. Researchers from the University of Surrey and AMBER, the materials science centre based at Trinity College Dublin have now demonstrated how graphene-treated nanowires can be used to produce flexible touchscreens at a fraction of the current cost.

Using a simple, scalable and inexpensive method the researchers produced hybrid electrodes, the building blocks of touchscreen technology, from and graphene.

Dr Alan Dalton from the University of Surrey said, "The growing market in devices such as wearable technology and bendable smart displays poses a challenge to manufacturers. They want to offer consumers flexible, touchscreen technology but at an affordable and realistic price. At the moment, this market is severely limited in the materials to hand, which are both very expensive to make and designed for rigid, flat devices."

Lead author, Dr Izabela Jurewicz from the University of Surrey commented, "Our work has cut the amount of expensive nanowires required to build such touchscreens by more than fifty times as well as simplifying the production process. We achieved this using graphene, a material that can conduct electricity and interpret touch commands whilst still being transparent."

Co-author, Professor Jonathan Coleman, AMBER, added, "This is a real alternative to ITO displays and could replace existing touchscreen technologies in electronic devices. Even though this material is cheaper and easier to produce, it does not compromise on performance."

"We are currently working with industrial partners to implement this research into future devices and it is clear that the benefits will soon be felt by manufacturers and consumers alike."

Explore further: Conductive nanofiber networks for flexible, unbreakable, and transparent electrodes

Related Stories

First graphene-based flexible display produced

September 5, 2014

(Phys.org) —A flexible display incorporating graphene in its pixels' electronics has been successfully demonstrated by the Cambridge Graphene Centre and Plastic Logic, the first time graphene has been used in a transistor-based ...

Shatterproof screens that save smartphones

June 6, 2014

University of Akron polymer scientists have developed a transparent electrode that could change the face of smartphones, literally, by making their displays shatterproof.

Stretchable, transparent graphene-metal nanowire electrode

May 30, 2013

A hybrid transparent and stretchable electrode could open the new way for flexible displays, solar cells, and even electronic devices fitted on a curvature substrate such as soft eye contact lenses, by the UNIST(Ulsan National ...

Recommended for you

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...

Low-cost battery from waste graphite

October 11, 2017

Lithium ion batteries are flammable and the price of the raw material is rising. Are there alternatives? Yes: Empa and ETH Zürich researchers have discovered promising approaches as to how we might produce batteries out ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Canis Maximus
not rated yet Sep 28, 2014
Apple and Samsung to sue in three... two... one...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.