Inter-dependent networks stress test

August 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems for control and management. Every step in the network chain is interconnected with a wider network and they are all mutually dependent. A team of UK-based scientists has studied various aspects of inter-network dependencies, not previously explored. The findings have been published in the European Physical Journal B by Gaihua Fu from Newcastle University, UK, and colleagues. These findings could have implications for maximising the reliability of such networks when facing natural and man-made hazards.

Previous research has focused on studying single, isolated systems, not interconnected ones. However, understanding inter-connectedness is key, since failure of a component in one network can cause problems across the entire system, which can result in a cascading failure across multiple sectors, as in the energy example quoted above.

In this study, interdependent systems are modelled as a network of networks. The model characterises interdependencies in terms of direction, redundancy, and extent of inter-network connectivity.

Fu and colleagues found that the severity of cascading failure increases significantly when inter-network connections are one-directional. They also found that the degree of redundancy—which is linked to the number of connections—in inter-network connections can have a significant effect on the robustness of systems, depending on the direction of inter- connections.

The authors observed that the interdependencies between many real-world systems have characteristics that are consistent with the less reliable systems they tested, and therefore they are likely to operate near their critical thresholds. Finally, ways of cost-effectively reducing the vulnerability of inter-dependent networks are suggested.

Explore further: Team launches world's first ZigBee-based inter-satellite communication system

More information: Fu, G. et al. (2014). Interdependent networks: Vulnerability analysis and strategies to limit cascading failure. European Physical Journal B. DOI: 10.1140/epjb/e2014-40876-y

Related Stories

Internet architecture is at odds with its use

August 23, 2012

The largest manmade structure is now used much differently than was originally intended by its designers. Of all Internet communication, only a fraction of traffic is intended to be exchanged between specific network elements ...

Jekyll and Hyde protein signalling

June 23, 2014

Whether a cell lives or dies is determined by complex protein networks within the body. Researchers in Systems Biology Ireland and UCD Conway Institute have uncovered how these opposing biological functions are regulated ...

Recommended for you

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Phase transition discovery opens the door to new electronics

January 16, 2017

A group of European scientists led by researchers at TU Delft has discovered how phase transitions propagate throughout materials called nickelates. The discovery improves our understanding of these novel materials, which ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.