Designing ultra-sensitive biosensors for early personalised diagnostics

July 3, 2014

A new type of high-sensitivity and low-cost sensors, called plasmonic biosensors, could ultimately become a key asset in personalised medicine by helping to diagnose diseases at an early stage.

Personalised medicine is one of the new developments that is deemed to revolutionise health care. A key component is the detection of biomarkers, proteins in blood or saliva, for example, whose presence or abnormal concentration is caused by a disease. Biomarkers can indicate the presence of diseases long before the appearance of symptoms. However, currently the detection of these molecules still requires specialised laboratories and is costly.

Thanks to the EU-funded research project called NANOANTENNA, completed in March 2013, physicists joined forces with chemists, nanotechnologists and biomedical researchers with the aim of developing a so-called plasmonic nanobiosensor for the detection of proteins. It consisted of nanoantennas, tiny gold rods about 100 to 200 nanometres long and 60 to 80 nm wide. By shining light onto such a nanoantenna, the electrons inside start moving back and forth, amplifying the light radiation in hot spots regions of the antenna, explains Pietro Giuseppe Gucciardi, a physicist at the Institute for Chemical-Physical Processes, affiliated with the Italian National Research Council CNR, in Messina, Sicily. "The aim of the project was to deliver a proof of concept," says Gucciardi.

During the 1990s' researchers found that plasmons, tiny waves of electrons in metallic surfaces that appear when such surfaces are illuminated, also amplify the light in an area close to that surface. In , are identified by irradiating them with infrared light and by analysing the spectrum of the light they emit, known as a Raman spectrum. If these molecules are close to nanoparticles, the plasmons in the nanoparticles enhance the Raman signal coming from the molecules that have to be detected with several orders of magnitude.

The nanoantennas developed in this project only enhance the emitted Raman signal if the biomolecules are close to the . Therefore, the molecules have to be trapped to be detected. To do so, the researchers attached bioreceptors, fragments of DNA engineered to recognise specific proteins, to the nanoantennas. When the nanoantennas studded with the bioreceptors are incubated in a solution that contains the biomarkers to be detected, the latter become attached to the nanoantennas. When, subsequently, these nanoantennas are illuminated with light, they show the Raman fingerprints of both the bioreceptor and the biomarker, as Gucciardi points out.

One expert comments that health-care programmes are quickly moving to prevention and early detection of diseases, done in point-of-care (POC) or bed-side conditions. "It is important to fund this research because it will be a component of future medicine," says Alexandre Brolo, professor of chemistry specialised in nanotechnology research, who has been developing plasmonic biosensors at the University of Victoria, British Columbia, Canada. He also believes that such approach will make medical care more cost effective. "You want something that is very cheap and is not going to put a big burden on the system," says Brolo.

Another expert agrees. "Small, compact and autonomous devices with the same features in terms of sensitivity and robustness as current commercial instrumentation based on plasmonics are still needed," says Maria Carmen Estévez, a researcher at the Catalan Institute of Nanoscience and Nanotechnology in Bellaterra, Spain. The "end-users" of these biosensors have to understand that the development of these devices by researchers in many disciplines is a long process, notes Estévez. She adds that these biosensors will need to be integrated with optical components, with electronics for reading out the measurements, software to process all data, and rely on the use of microfluidics to prepare and process the sample.

Explore further: Accurate placement of molecules into gaps between gold nanoantennas enables ultrahigh-sensitivity molecular detection

Related Stories

Tiny antennas let long light waves see in infrared

September 24, 2013

( —University of Illinois at Urbana-Champaign researchers have developed arrays of tiny nano-antennas that can enable sensing of molecules that resonate in the infrared (IR) spectrum.

Researchers create novel nanoantennas

May 4, 2011

( -- A team of plasmonics researchers has developed a novel type of nanoantenna that could lead to advances in drug and explosives detection.

Chemical sensor on a chip

June 11, 2014

Using miniaturized laser technology, a tiny sensor has been built at the Vienna University of Technology which can test the chemical composition of liquids.

Recommended for you

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.