Team uses nanoparticles to enhance chemotherapy

July 7, 2014 by James Hataway, University of Georgia
Shanta Dhar (center), Rakesh Pathak (right) and Sean Marrache have developed a new formulation of cisplatin, a common chemotherapy drug, that significantly increases the drug's ability to target and destroy cancerous cells. Credit: University of Georgia

(Phys.org) —University of Georgia researchers have developed a new formulation of cisplatin, a common chemotherapy drug, that significantly increases the drug's ability to target and destroy cancerous cells.

Cisplatin may be used to treat a variety of cancers, but it is most commonly prescribed for cancer of the bladder, ovaries, cervix, testicles and lung. It is an effective drug, but many cancerous cells develop resistance to the treatment.

Shanta Dhar, assistant professor of chemistry in the UGA Franklin College of Arts and Sciences, and Rakesh Pathak, a postdoctoral researcher in Dhar's lab, constructed a modified version of cisplatin called Platin-M, which is designed to overcome this resistance by attacking mitochondria within cancerous cells. They published their findings recently in the Proceedings of the National Academy of Sciences.

"You can think of mitochondria as a kind of powerhouse for the cell, generating the energy it needs to grow and reproduce," said Dhar, a member of the UGA Cancer Center and principal investigator for the project. "This prodrug delivers cisplatin directly to the mitochondria in . Without that essential powerhouse, the cell cannot survive."

Sean Marrache, a graduate student in Dhar's lab, entrapped Platin-M in a specially designed nanoparticle 1,000 times finer than a human hair that seeks out the mitochondria and releases the drug. Once inside, Platin-M interferes with the 's DNA, triggering cell death.

Dhar's research team tested Platin-M on neuroblastoma-a cancer commonly diagnosed in children-that typically originates in the adrenal glands. In preliminary experiments using a cisplatin-resistant cell culture, Platin-M were 17 times more active than alone.

"This technique could become a treatment for a number of cancers, but it may prove most useful for more aggressive forms of cancer that are resistant to current therapies," said Pathak.

Both Dhar and Pathak caution that their experimental results are preliminary and they must do more work before Platin-M enters any clinical trials. However, their early results in mouse models are promising, and they are currently developing safety trials in larger animals.

"Cisplatin is a well-studied chemotherapy, so we hope our unique formulation will enhance its efficacy," said Dhar, who is also a member of UGA's Nanoscale Science and Engineering Center, Center for Drug Discovery, and Regenerative Bioscience Center. "We are excited about these early results, which look very promising."

This work was supported by an award from the National Institutes of Health, grant number P30GM092378, through the UGA Center of Metalloenzyme Studies and the UGA Office of the Vice President for Research.

Explore further: New aspirin-based prodrug may prevent damage caused by chemotherapy

More information: Detouring of cisplatin to access mitochondrial genome for overcoming resistance, Proceedings of the National Academy of Sciences, www.pnas.org/cgi/doi/10.1073/pnas.1405244111

Related Stories

Researchers use nanoparticles to fight cancer

August 14, 2013

Researchers at the University of Georgia are developing a new treatment technique that uses nanoparticles to reprogram immune cells so they are able to recognize and attack cancer. The findings were published recently in ...

Fine tuning an old-school chemotherapy drug

May 5, 2014

First approved by the FDA in the 1970s, the chemotherapy drug cisplatin and its relative carboplatin remain mainstays of treatment for lung, head and neck, testicular and ovarian cancer. However, cisplatin's use is limited ...

Recommended for you

Engineers develop first method for controlling nanomotors

September 19, 2018

In a breakthrough for nanotechnology, engineers at The University of Texas at Austin have developed the first method for selecting and switching the mechanical motion of nanomotors among multiple modes with simple visible ...

How medicine literally gets under your skin

September 19, 2018

If drugs are to enter the body painlessly and efficiently, they can be administered via skin patches. Researchers at Empa and the University of Fribourg are currently developing nano-containers for therapeutic agents that ...

Graphene tunnelling junctions: beyond the breaking point

September 19, 2018

Molecular electronics is a burgeoning field of research that aims to integrate single molecules as active elements in electronic devices. Obtaining a complete picture of the charge transport properties in molecular junctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.