Mapping the optimal route between two quantum states

July 30, 2014
Measurement data showing the comparison with the 'most likely' path (in red) between initial and final quantum states (black dots). The measurements are shown on a representation referred to as a Bloch sphere. Credit: Areeya Chantasri

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal or "most likely" path, but it is not as easy to predict the path or track it experimentally as a straight-line between two points would be in our everyday, classical world.

In a new paper featured this week on the cover of Nature, scientists from the University of Rochester, University of California at Berkeley and Washington University in St. Louis have shown that it is possible to track these quantum trajectories and compare them to a recently developed theory for predicting the most likely path a system will take between two states.

Andrew N. Jordan, professor of physics at the University of Rochester and one of the authors of the paper, and his group had developed this new theory in an earlier paper. The results published this week show good agreement between theory and experiment.

For their experiment, the Berkeley and Washington University teams devised a superconducting qubit with exceptional coherence properties, permitting it to remain in a during the continuous monitoring. The experiment actually exploited the fact that any measurement will perturb a quantum system. This means that the optimal path will come about as a result of the continuous measurement and how the system is being driven from one quantum state to another.

Kater Murch, co-author and assistant professor at Washington University in St. Louis, explained that a key part of the experiment was being able to measure each of these trajectories while the system was changing, something that had not been possible until now.

Jordan compares the experiment to watching butterflies make their way one by one from a cage to nearby trees. "Each butterfly's path is like a single run of the experiment," said Jordan. "They are all starting from the same cage, the initial state, and ending in one of the trees, each being a different end state." By watching the quantum equivalent of a million butterflies make the journey from cage to tree, the researchers were in effect able to predict the most likely path a butterfly took by observing which tree it landed on (known as post-selection in quantum physics measurements), despite the presence of a wind, or any disturbance that affects how it flies (which is similar to the effect measuring has on the system).

"The experiment demonstrates that for any choice of final , the most likely or 'optimal path' connecting them in a given time can be found and predicted," said Jordan. "This verifies the theory and opens the way for active quantum control techniques." He explained that only if you know the most likely path is it possible to set up the system to be in the desired state at a specific time.

Explore further: The Quantum Cheshire Cat: Can neutrons be located at a different place than their own spin?

More information: Nature, DOI: 10.1038/nature13559

Related Stories

Playing quantum tricks with measurements

February 15, 2013

A team of physicists at the University of Innsbruck, Austria, performed an experiment that seems to contradict the foundations of quantum theory—at first glance. The team led by Rainer Blatt reversed a quantum measurement ...

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

arom
Jul 30, 2014
This comment has been removed by a moderator.
George_Rajna
Jul 31, 2014
This comment has been removed by a moderator.
Accounts
5 / 5 (1) Aug 06, 2014
I thought the whole point of quantum mechanics is that things don't "evolve" or follow paths, but rather "jump" from one state to another.

So I am more than quantum confused!

- Greg
Whydening Gyre
1 / 5 (1) Aug 06, 2014
I thought the whole point of quantum mechanics is that things don't "evolve" or follow paths, but rather "jump" from one state to another.

So I am more than quantum confused!

- Greg

It's related to chiralitic nature of quantum "spin" states...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.