Classical physics shown to be equal to quantum theory when it comes to unusual experiments with light beams

October 25, 2013, RIKEN
Reconstruction of photon trajectories (left) from the measured transverse momentum of light (right) in a vortex beam. Credit: Reproduced from Ref. 1 and licensed under CC by 3.0 at dx.doi.org/10.1088/1367-2630/15/7/073022. © 2013 K. Bliokh et al.

Quantum mechanics provides such a different description of the world compared to classical physics that even Albert Einstein had problems comprehending the implications of the theory. However, sometimes the predictions attributed to quantum-mechanical effects alone actually conform to the framework and predictions of classical physics. Franco Nori, Konstantin Bliokh and colleagues from the RIKEN Center for Emergent Matter Science have now derived a classical theory explanation for a light beam experiment previously explained only through complex quantum-mechanical arguments.

One of the fundamental principles in is that certain properties of a quantum-mechanical object, such as a photon or electron, cannot be measured simultaneously with precision. The position of these particles, for example, cannot be determined at the same time as its momentum: measuring one property causes a certain 'fuzziness' in the determination of the other.

A few years ago, an experiment in which both the path of photons and their interference patterns were measured simultaneously drew considerable attention. "This was because the experiment seemingly overcame the fundamental restrictions of quantum mechanics. Simultaneous measurements of the path information and interference picture are impossible in standard , like the simultaneous determination of the coordinates and momentum of a particle."

The results of the two-slit interference experiment—as it was known—were brought into line with quantum mechanics by arranging the measurements such that the results were averaged over several experiments conducted using a number of photons. This means that the precise position of a single photon was not actually measured. Instead, its properties were retrospectively deduced by making many measurements on identical particles.

Explaining these experiments required complicated quantum theory arguments. Nori and his colleagues have now presented an alternative viewpoint. "We give a classical-optics interpretation of this experiment and other related problems," says Bliokh.

Key to the researchers' classical interpretation is a description of the experiment based on the momentum density of light (Fig. 1). Because many are averaged, the results can be regarded in the context of the way light waves would be treated in classical theory.

This approach, according to the researchers, can also explain how a number of other effects seen in the complex propagation of classical light similarly provide of photon trajectories. Even though quantum physics can sometimes be very unintuitive, it is often surprising how many of these effects can also be explained by classical theory.

Explore further: Breaking the limits of classical physics

More information: .Bliokh, K. Y., Bekshaev, A. Y., Kofman, A. G. & Nori, F. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. New Journal of Physics 15, 073022 (2013). dx.doi.org/10.1088/1367-2630/15/7/073022

Related Stories

Breaking the limits of classical physics

June 7, 2012

(Phys.org) -- With simple arguments, researchers show that nature is complicated. Researchers from the Niels Bohr Institute have made a simple experiment that demonstrates that nature violates common sense – the world ...

Quantum physics mimics spooky action into the past

April 23, 2012

Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Vienna Center for Quantum Science and Technology (VCQ) have, for the ...

Recommended for you

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

New thermoelectric material delivers record performance

January 17, 2019

Taking advantage of recent advances in using theoretical calculations to predict the properties of new materials, researchers reported Thursday the discovery of a new class of half-Heusler thermoelectric compounds, including ...

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.