New technique controls fluids at the nanoscale

June 30, 2014 by Lea Kivivali

(Phys.org) —Researchers at Swinburne University of Technology have revealed a revolutionary method of pumping fluid at the nanoscale level that has potential use for desalinating water and lab-on-a-chip devices.

They have developed a simple, highly accurate model to predict fluid movement for highly confined fluids and to then use this knowledge to drive flow without mechanical pumping or the use of electrodes.

"Conventional modelling works perfectly with things we can see such as the flow of air over an aircraft," Swinburne's Professor Billy Todd said.

"But when devices get to nanometre size or 1 billionth of a metre – about one ten-thousandth the diameter of a human hair – the fundamental assumptions of break down. It is difficult to force fluid to flow in confined dimensions that are just a few atoms thick."

Professor Todd is Chair of the Department of Mathematics in the Faculty of Science Engineering and Technology at Swinburne. Together with colleagues at Swinburne, RMIT and Roskilde University in Denmark, he has applied ideas from mathematics and physics, and used supercomputers to look at what happens at the interface between the solid surface and the fluid at nanometre dimensions.

"Several years ago, researchers in France and Germany developed a theory that a rotating electric field could induce water molecules to spin and that this spin motion could be converted into linear streaming ," Professor Todd said.

Molecular dynamics simulation of water molecules acted upon by a rotating electric field. The top wall (composed of blue atoms) is hydrophobic, while the bottom wall (pink atoms) is hydrophilic. The flow of water is strongest at the top wall interface, with water molecules moving from right to left.

"If the symmetry of the confining walls could be broken such that one wall was hydrophilic and attracted water, while the other was hydrophobic and repelled water, then mathematically it was demonstrated that water could be made to flow in just one direction, namely along the channel."

Professor Todd's team has further developed that theory and performed the first molecular dynamics computer simulations to demonstrate this effect, mimicking nanoconfined water under the application of a rotating microwave field.

What they found was that the use of circularly polarised microwaves could drive substantial flow at the nanoscale without significantly heating the water.

"Flow can be sustained when the fluid is driven out of equilibrium by an external uniform rotating and confined between two flat surfaces with different degrees of hydrophobicity, thus opening up an entirely new way to pump and control confined to nano or micro-metre scale dimensions," Professor Todd said.

He said this discovery has potential application for desalinating water as well as for biotech diagnostic tools such as lab-on-a-chip devices.

This research was recently published in Langmuir. Professor Todd is now seeking an experimental partner to verify this model in a lab.

Explore further: Researchers explain emergence of bacterial vortex

More information: "Molecular Dynamics Study of Nanoconfined Water Flow Driven by Rotating Electric Fields under Realistic Experimental Conditions." Sergio De Luca, B. D. Todd, J. S. Hansen, and Peter J. Daivis. Langmuir 2014 30 (11), 3095-3109. DOI: 10.1021/la404805s

Related Stories

Researchers explain emergence of bacterial vortex

June 23, 2014

When a bunch of B. subtilis bacteria are confined within a droplet of water, a very strange thing happens. The chaotic motion of all those individual swimmers spontaneously organizes into a swirling vortex, with bacteria ...

Microgels' behaviour under scrutiny

April 30, 2013

Being a physicist offers many perks. For one, it allows an understanding of the substances ubiquitous in everyday industrial products such as emulsions, gels, granular pastes or foams. These are known for their intermediate ...

Recommended for you

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...

Low-cost battery from waste graphite

October 11, 2017

Lithium ion batteries are flammable and the price of the raw material is rising. Are there alternatives? Yes: Empa and ETH Zürich researchers have discovered promising approaches as to how we might produce batteries out ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.