How flow shapes bacterial biofilms

EPFL biophysicists have taken a systematic look into how bacterial biofilms are affected by fluid flow. The findings can give us clues about the physical rules guiding biofilm architecture, but also about the social dynamics ...

Researchers crack an enduring physics enigma

For decades, physicists, engineers and mathematicians have failed to explain a remarkable phenomenon in fluid mechanics: the natural tendency of turbulence in fluids to move from disordered chaos to perfectly parallel patterns ...

Space behaviour

Europe's Columbus laboratory enters its eleventh year in space with steady operations, a few upgrades and several experiments in full swing.

page 1 from 16

Fluid dynamics

In physics, fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow—the natural science of fluids (liquids and gases) in motion. It has several subdisciplines itself, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and reportedly modeling fission weapon detonation. Some of its principles are even used in traffic engineering, where traffic is treated as a continuous fluid.

Fluid dynamics offers a systematic structure that underlies these practical disciplines, that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves calculating various properties of the fluid, such as velocity, pressure, density, and temperature, as functions of space and time.

Historically, hydrodynamics meant something different than it does today. Before the twentieth century, hydrodynamics was synonymous with fluid dynamics. This is still reflected in names of some fluid dynamics topics, like magnetohydrodynamics and hydrodynamic stability—both also applicable in, as well as being applied to, gases.

This text uses material from Wikipedia, licensed under CC BY-SA