Catching a gravitational wave

June 26, 2014
Catching a gravitational wave
Monash and Warwick astronomers are searching for gravitational waves emitted by Scorpius X-1.

(Phys.org) —When Albert Einstein proposed the existence of gravitational waves as part of his theory of relativity, he set in train a pursuit for knowledge that continues nearly a century later.

These ripples in the space-time continuum exert a powerful appeal because it is believed they carry information that will allow us to look back into the very beginnings of the universe. But although the weight of evidence continues to build, undisputed confirmation of their existence still eludes scientists.

Researchers from Monash University and the UK's University of Warwick recently provided another piece of the puzzle with their precise measurements of a rapidly rotating neutron star: one of the smallest, densest stars in the universe.

Neutron stars, along with colliding black holes and the Big Bang, may all be sources of gravitational waves.

In work published in The Astrophysical Journal earlier this year, the Monash and Warwick scientists significantly improved the precision with which they could measure the orbit of Scorpius X-1, a double star system containing a neutron star that feeds off a nearby companion star. This interaction makes it the strongest source of X-rays in the sky apart from the sun.

Dr Duncan Galloway from the Monash School of Physics and the Monash Centre for Astrophysics said that the main difficulty in searching for gravitational waves emitted by Scorpius X-1 was the lack of precise knowledge about the neutron star's orbit.

"We have made a concerted effort to refine Scorpius X-1's orbit and other parameters, with the goal of significantly boosting the sensitivity of searches for gravitational waves," Dr Galloway said.

"Detecting gravitational waves will open a new window for observation and allow us to study objects in the universe in a way that can't be achieved using traditional astronomy techniques."

Monash PhD student Ms Shakya Premachandra spent three months at the University of Warwick learning specific techniques and methods to improve the team's measurements.

Under the guidance of Dr Danny Steeghs from Warwick's Astronomy and Astrophysics Group, Ms Premachandra worked on the research data and learnt a specific software program developed by Warwick astronomers.

Dr Steeghs said he first started researching gravitational waves with Monash in 2009 and seed funding from the Monash Warwick Alliance has supported these efforts.

"With help from the Monash Warwick Alliance, we quickly identified a genuine opportunity to make substantial research progress by combining our expertise, which also led to an ambitious plan for continued collaboration," Dr Steeghs said.

Dr Galloway and Ms Premachandra are members of the LIGO Scientific Collaboration, a world-wide network of more than 800 astronomers. Its work is complementary to that of the Parkes Pulsar Timing Array, which uses observations of pulsars to search for extremely low-frequency , as well as a proposed future space mission, the Laser Interferometer Space Antenna.

Explore further: Joint research builds stronger scaffold

More information: "PRECISION EPHEMERIDES FOR GRAVITATIONAL-WAVE SEARCHES. I. Sco X-1." Duncan K. Galloway et al. The Astrophysical Journal Volume 781 Number 1, 2014 ApJ 781 14 DOI: 10.1088/0004-637X/781/1/14

Related Stories

Joint research builds stronger scaffold

May 27, 2014

(Medical Xpress)—A new biomaterial that enhances the ability of stem cells to regenerate into nerves and body parts is the direct result of collaborative work between Monash University and the University of Warwick.

Black holes don't make a big splash

November 7, 2013

(Phys.org) —Throughout our universe, tucked inside galaxies far, far away, giant black holes are pairing up and merging. As the massive bodies dance around each other in close embraces, they send out gravitational waves ...

Pulsars: The Universe's gift to physics

February 19, 2012

Pulsars, superdense neutron stars, are perhaps the most extraordinary physics laboratories in the Universe. Research on these extreme and exotic objects already has produced two Nobel Prizes. Pulsar researchers now are poised ...

Recommended for you

Tracing aromatic molecules in the early universe

March 22, 2017

A molecule found in car engine exhaust fumes that is thought to have contributed to the origin of life on Earth has made astronomers heavily underestimate the amount of stars that were forming in the early Universe, a University ...

Ice in Ceres' shadowed craters linked to tilt history

March 22, 2017

Dwarf planet Ceres may be hundreds of millions of miles from Jupiter, and even farther from Saturn, but the tremendous influence of gravity from these gas giants has an appreciable effect on Ceres' orientation. In a new study, ...

Sand flow theory could explain water-like streaks on Mars

March 22, 2017

(Phys.org)—A team of researchers from France and the Slovak Republic has proposed a theory to explain the water-like streaks that appear seasonally on the surface of Mars, which do not involve water. In their paper published ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

zaxxon451
3 / 5 (2) Jun 27, 2014
They don't exist. It's time for a rethinking of the inflationary model.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.