What's in your air?

May 9, 2014 by Denise Brehm
Katie Spies works on the internal wiring on a CLAIRITY node. Credit: Eben Cross

Every senior at MIT has come to know the campus in a personal way, having established favorite haunts for studying, eating, resting, and playing during their four years at the Institute. But the Course 1 Class of 2014 is getting to know the campus on an even more intimate level, and wants to share that with others.

These students in the MIT Department of Civil and Environmental Engineering (CEE) just completed deployment of a highly sophisticated monitoring network that covers most of the 0.25-square-mile campus. The network, called CLAIRITY, has 24 indoor and outdoor sensor nodes that continuously measure gases and the small particles found in and send these data via wireless to a central computer. They formally launched the network and its web portal in a public presentation May 6 in Room 46-3002.

The network represents two semesters of work for the students, who designed, built, and deployed the network as the capstone project in the CEE engineering design subject. They worked at Beaver Works, a joint facility of MIT Lincoln Lab and MIT's School of Engineering, located in Technology Square.

Air-quality networks like CLAIRITY, and other new types of innovative infrastructure, provide information essential to the design of smarter cities, a major goal of civil and environmental engineers.

"This project exemplifies the very best in our students, to take a project from an idea, to a plan, to implementation," says CEE department head Markus Buehler, a professor of civil and . "I congratulate the Class of 2014 on this major accomplishment, and am excited about the potential impact of this new technology."

Smart cities need better air-quality monitoring

Air pollution is the leading environmental cause of premature death and a major contributor to chronic illness like asthma, particularly in congested urban areas with dense vehicle traffic. This is true in U.S. cities and even more so in many developing countries where the rapid rise in automobile use is leading to dangerously high levels of airborne particles and gases.

Graphic showing a CLAIRITY node without the 3-D printed casing.Credit: CLAIRITY Hardware Team

In the United States, the Environmental Protection Agency (EPA) monitors air quality by measuring levels of particulate matter and gases defined by the Clean Air Act. In Massachusetts, the Department of Environmental Protection (DEP), following EPA protocols, has deployed sensors at 28 monitoring stations strategically placed across the commonwealth. Five of these monitoring stations are in Boston. Most cities, including Cambridge, have no DEP monitoring stations.

Thanks to the CEE students, the MIT campus now has its own network that provides extremely high-resolution, precise data—each sensor is calibrated using a state-of-the-art lab system—on par with the DEP monitoring stations. But a monitoring station in the DEP's statewide network is more than 50 times as expensive as nodes in the CLAIRITY system, each of which cost only $1,500 to build.

The MIT network measures ozone, carbon monoxide, nitric oxide, nitrogen dioxide, and small particles like soot, dust, and pollen that can increase risk of lung and heart disease. The web portal shows a map indicating air health at each node, and displays data from one or more sensor nodes as a graph, in time intervals of the user's choice, and makes these data downloadable as a CSV file. The site automatically refreshes every 10 seconds.

CLAIRITY reports that air on the Cambridge campus is relatively clean. The network picked up the occasional blast of gas and particles related to heavy vehicle traffic at certain points in the day – events that standard hourly monitors tend to average out, rather than report. It also recorded bursts of pollution at some indoor nodes, as well as outdoor pollution events that affected the entire Boston area.

The inexpensive network—now operational—could serve as a template for air-quality monitoring in other cities, even the more polluted cities throughout the developing world.

A CLAIRITY node deployed at the Kresge parking lot. Credit: Eben Cross

Hands-on project from start to finish

The students conceived of the project, created the initial design, and built the first prototype of their sensor node in the fall 2013 semester. This spring they fine-tuned the design, purchased the parts, assembled the gas sensors, placed a commercial laser particle sensor and microprocessor on each node, and then 3-D printed the housing for the sensors, as well as the weather-protection casing that covers the entire node.

"The seniors really rose to the challenge of this class, dedicating extensive time and energy to learning new skills and working through a problem from design to implementation and all the hiccups along the way," says associate professor Colette Heald, who taught the class with lecturer Eben Cross and associate professor Jesse Kroll. "This network is a tremendous accomplishment, and something that we hope will be a part of the legacy of the CEE Class of 2014."

The class divided into five teams, each with primary responsibility for one aspect of the project. The hardware team selected, purchased, designed and 3-D printed, and assembled the . The software team wrote the code used by each Raspberry Pi microprocessor to decipher data and forward it to the central computer. The calibration team translated voltage into concentration volumes, and then calibrated the continuous sensor data against high-fidelity instruments. Students on the deployment team installed all 24 nodes, and wired them to power connections. The communications team built and populated the and translated data into easily understandable formats.

Daphne Basangwa, a member of the hardware team, says that "seeing the different teams' representatives working together to reach a common goal" and "knowing this is how it will work in real life" injected the project with a sense of reality.

"Just keeping track of the email threads from all the people involved" in installing the 24 nodes was a challenge, says Linda Seymour, a member of the deployment team. "But the people we're working with on installation are great. We're meeting some of the people who make MIT function, like the electricians and the people who run the Tech shuttle."

Explore further: Smart sensor technology to combat indoor air pollution

Related Stories

Smart sensor technology to combat indoor air pollution

April 14, 2014

Indoor air quality (IAQ) influences the health and well-being of people but for the last 20 years there has been a growing concern about pollutants in closed environments, the difficulty in identifying them and their critical ...

Low-cost sensors gather air pollution data

November 26, 2013

(Phys.org) —Epidemiologists' understanding of the relationship between exposure to airborne pollutants and a range of health conditions, such as cardiovascular disease and asthma, has grown increasingly precise in recent ...

Cambridge to host first city-wide wireless sensor network

April 5, 2007

Harvard University, BBN Technologies, and the City of Cambridge have begun a four-year project to install 100 wireless sensors atop streetlights in Cambridge, Mass., creating the world's first city-wide network of wireless ...

India admits 'Delhi as polluted as Beijing' (Update)

May 8, 2014

India's state air monitoring centre made a rare admission Thursday that pollution in New Delhi was comparable with Beijing, but disputed a WHO finding that the Indian capital had the dirtiest atmosphere in the world.

Air quality worsening in world's cities

May 7, 2014

Most city dwellers around the world are exposed to air pollution levels that are considered unsafe, and the situation is getting worse, according to a World Health Organization report Wednesday.

Monitoring air quality takes next step

March 31, 2014

With air pollution linked to millions of deaths around the world, it has never been more important to monitor the air we breathe. Today marks a significant step forward as a deal is secured to build a crucial space sensor ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.