Queuing theory helps physicist understand protein recycling

April 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, studying lines, or queues, has been crucial in trying to understand how cells deal with bottlenecks that limit the recycling of proteins.

The work, submitted during Mather's first semester as an assistant professor, has received attention from the National Science Foundation in the form of a $960,000 grant.

Leveraging the history of queuing theory, and working at the intersection of statistics, physics, engineering, biology, and computer science, Mather tries to extend an understanding of waiting in line to how cells operate, especially as it relates to what the consequences could be of traffic jams inside cells.

"If you consider the analogy of a subway, it's a fairly apt one," Mather said. "A subway can deal with a certain number of customers with its limited number of outlets. If the flow is correct, the system works fine. If people arrive in bunches, it can jam the system. The same is true in cells."

In the subway analogy, enzymes act as gatekeepers while proteins are the customers. The proteins are trying to be recycled, so they can be made into other proteins, but the enzymes can only handle so much traffic and proteins are either not recycled or they need to find alternative pathways.

"By better understanding these pathways we find associations with development, inflammation, cancer – they are all potential areas of impact," Mather said. "In principle, every cell has limited resources available to recycle proteins. The paths associated with what we consider positive development for those proteins might cross talk with paths associated with information transmission, or less desirable outcomes such as cancer.

"What we're doing now is using a simple, common bacterium, E. coli, and using to see how circuits behave in in an effort to understand the effect of these pathways," Mather said.

By understanding these bottlenecks, Mather seeks to discover the mechanism behind how naturally alleviate bottlenecks by directing their proteins to different 'servers' to be recycled. He said his research will then produce intuitive and powerful quantitative models for these bottlenecks, as well as create new molecular tools for and biotechnology in general, which will allow for the construction of large, scalable bio-circuits in bacteria.

This, he says he believes, will push the frontiers of both traditional and synthetic biology.

Mather received his bachelor's degree and Ph.D. from Georgia Tech. He arrived at Virginia Tech in 2012.

Explore further: Non-invasive technique to "light up" animal cells

Related Stories

Non-invasive technique to "light up" animal cells

March 21, 2014

A Florida State University scientist is part of a team of researchers that has developed a non-invasive way to "light up" animal cells, a development that could significantly advance cell-based therapies and pave the way ...

Stress changes how people make decisions: study

February 28, 2012

(Medical Xpress) -- Trying to make a big decision while you’re also preparing for a scary presentation? You might want to hold off on that. Feeling stressed changes how people weigh risk and reward. A new article published ...

Plants recycle too

February 13, 2014

A research team from VIB and Ghent University (Belgium), and Staffan Persson from the Max Planck Institute of Molecular Plant Physiology in Potsdam (Germany) has now identified a new protein complex which is crucial for endocytosis ...

Synthetic gene circuits pump up cell signals

April 8, 2014

(Phys.org) —Synthetic genetic circuitry created by researchers at Rice University is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated in Parkinson's, Huntington's ...

Recommended for you

Ants need work-life balance, research suggests

January 16, 2017

As humans, we constantly strive for a good work-life balance. New findings by researchers at Missouri University of Science and Technology suggest that ants, long perceived as the workaholics of the insect world, do the same.

New tools will drive greater understanding of wheat genes

January 16, 2017

Howard Hughes Medical Institute scientists have developed a much-needed genetic resource that will greatly accelerate the study of gene functions in wheat. The resource, a collection of wheat seeds with more than 10 million ...

How China is poised for marine fisheries reform

January 16, 2017

As global fish stocks continue sinking to alarmingly low levels, a joint study by marine fisheries experts from within and outside of China concluded that the country's most recent fisheries conservation plan can achieve ...

SMiLE-seq: A new technique speeds up genetics

January 16, 2017

Scientists at EPFL have developed a technique that can be a game-changer for genetics by making the characterization of DNA-binding proteins much faster, more accurate, and efficient.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.