On titanium oxide catalyst, certain atoms and molecules flee when light appears

March 18, 2014, Pacific Northwest National Laboratory
When light strikes oxygen adatoms (red) on the surface of a titanium dioxide catalyst, the adatoms are excited by reactions with electrons and/or holes created in the catalyst. The adatoms undergo a change in their charge state and transfer energy to nearby krypton atoms (green), causing the reporting atoms to depart. A similar result was seen for chemisorbed molecular oxygen.

Long thought to be unresponsive to ultraviolet light, negatively charged oxygen ions stuck to the catalyst's surface, known as oxygen adatoms, actually respond to light, according to scientists at Pacific Northwest National Laboratory (PNNL). The researchers made this discovery by coating the surface of common catalyst titanium dioxide with krypton reporters. When light strikes the catalyst, the oxygen adatoms become electronically excited and knock the krypton off the surface. The alteration occurs because the adatoms react with electrons and/or holes created by the ultraviolet light.

"The adatoms could be an additional source of photochemical interactions on or other transition metal surfaces," said Dr. Nikolay Petrik, a physical chemist at PNNL and one of two authors on the yearlong study. "Potentially, the adatoms could participate in other photochemical reactions."

Despite being part of numerous devices and industrial processes, photocatalytic reactions on metal oxides, such as titanium dioxide, are not well understood. This study answers basic questions about the behavior of oxygen adatoms and other forms of chemisorbed oxygen, where the oxygen is adsorbed onto the and held by chemical bonds. Fundamental knowledge could lead to innovations in catalysis and energy production technologies, such as solar and fuel cells. "Oxygen on titanium dioxide is important because most applications involve oxygen in some way or another," said Dr. Greg Kimmel, a PNNL chemical physicist and the other scientist on the study.

A challenge in studying the photochemistry of titanium dioxide, such as the light-induced breakdown of water or organic solvents, is that the oxygen adatoms and other forms of chemisorbed oxygen stay put. Most of the chemisorbed oxygens do not desorb thermally, and it is difficult to analyze the oxygen using other techniques. "There are few tools available to tell scientists what is happening with oxygen on the surface," said Petrik. "What we were looking for was a way to probe oxygen left on the surface."

To examine the oxygen's behavior, Petrik came up with the idea of adding reporter molecules to the surface and seeing what they would tell. Reporter molecules have been used for decades, but they had not been applied to this situation. Working together, Petrik and Kimmel began with a slightly reduced crystal of titanium dioxide. They absorbed different forms of chemisorbed oxygen, including oxygen adatoms and , onto the crystals. Next, they added weakly bonding krypton and shined light on the surface. They found the krypton is knocked off the surface and can be easily measured.

Petrik offers this analogy for understanding the technique. Imagine a large room with an invisible person in it. How do you determine their location, their choices? You could fill the room with balloons. While you can't see the person move, you can determine their actions by the movement of the "reporter" balloons. Photo-active molecules, such as oxygen adatoms or molecular oxygen (O2), are like that invisible person. The departure of the krypton tells the scientists about how the oxygen prowls across the surface.

In this case, the oxygen adatoms are excited by reactions with electrons and/or holes created in the substrate by ultraviolet photon irradiation. The oxygen adatoms undergo a change in their charge state. This change causes the adatoms to move and collide with, and transfer energy to, nearby krypton atoms, overcoming the atoms' binding energy and desorbing them from the surface. The krypton reporters did not depart under other circumstances, including when hit the surface without adsorbed oxygen. Further, the krypton's departure was not primarily due to its collision with the 11 to 50 percent of molecular oxygen that photo-desorbs.

In regard to oxygen's behavior, Petrik and Kimmel are studying reactions of with considerably more complicated molecules, such as acetone, via infrared spectroscopy.

Explore further: Scientists show what it takes to get potential fuel feedstock to a reactive spot on model catalyst

More information: Petrik NG and GA Kimmel. 2014. "Probing the Photochemistry of Chemisorbed Oxygen on TiO2(110) with Kr and Other Co-Adsorbates." Physical Chemistry Chemical Physics 16:2338-2346. DOI: 10.1039/c3cp54195a

Related Stories

Recommended for you

Researchers unfold secret stability of bendy straws

October 18, 2018

Collapsible dog bowls, bendable medical tubes and drinking straws all seem to work on a common principle, snapping into a variety of mechanically stable and useful states. Despite the many applications for such "designer ...

Shining light on the separation of rare earth metals

October 18, 2018

Inside smartphones and computer displays are metals known as the rare earths. Mining and purifying these metals involves waste- and energy-intense processes. Better processes are needed. Previous work has shown that specific ...

Placing atoms for optimum catalysts

October 18, 2018

Fuels, plastics, and other products are made using catalysts, materials that drive chemical reactions. To design a better catalyst, scientists must get the right atoms in the right spot. Positioning the atoms can be difficult, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.