Study uses neutron scattering, supercomputing to demystify forces at play in biofuel production

November 13, 2013
This graphical representation of lignocellulosic biomass based on supercomputer models illustrates a new Oak Ridge National Laboratory study about the inner workings of plant cell walls during bioenergy production. Credit: Thomas Splettstoesser; scistyle.com

Researchers studying more effective ways to convert woody plant matter into biofuels at the Department of Energy's Oak Ridge National Laboratory have identified fundamental forces that change plant structures during pretreatment processes used in the production of bioenergy.

The research team, which published its results in Green Chemistry, set out to decipher the inner workings of during pretreatment, the most expensive stage of biofuel production. Pretreatment subjects plant material to extremely high temperature and pressure to break apart the protective gel of lignin and hemicellulose that surrounds sugary cellulose fibers.

"While pretreatments are used to make biomass more convertible, no pretreatment is perfect or complete," said ORNL coauthor Brian Davison. "Whereas the pretreatment can improve biomass digestion, it can also make a portion of the biomass more difficult to convert. Our research provides insight into the mechanisms behind this 'two steps forward, one step back' process."

The team's integration of experimental techniques including neutron scattering and X-ray analysis with supercomputer simulations revealed unexpected findings about what happens to molecules trapped between cellulose fibers.

"As the biomass heats up, the bundle of fibers actually dehydrates—the water that's in between the fibers gets pushed out," said ORNL's Paul Langan. "This is very counterintuitive because you are boiling something in water but simultaneously dehydrating it. It's a really simple result, but it's something no one expected."

This process of dehydration causes the to move closer together and become more crystalline, which makes them harder to break down.

In a second part of the study, the researchers analyzed the two polymers called lignin and hemicellulose that bond to form a tangled mesh around the cellulose bundles. According to the team's experimental observations and simulations, the two polymers separate into different phases when heated during pretreatment.

"Lignin is hydrophobic so it repels water, and hemicellulose is hydrophilic, meaning it likes water," Langan said. "Whenever you have a mixture of two polymers in water, one of which is hydrophilic and one hydrophobic, and you heat it up, they separate out into different phases."

Understanding the role of these underlying physical factors—dehydration and phase separation—could enable scientists to engineer improved plants and pretreatment processes and ultimately bring down the costs of .

"Our insight is that we have to find a balance which avoids cellulose dehydration but allows phase separation," Langan said. "We know now what we have to achieve—we don't yet know how that could be done, but we've provided clear and specific information to help us get there."

Explore further: Scientists develop 'green' pretreatment of Miscanthus for biofuels

More information: The research is published as "Common processes drive the thermochemical pretreatment of lignocellulosic biomass," and is available online here: pubs.rsc.org/en/content/articlelanding/2013/gc/c3gc41962b#!divAbstract

Related Stories

Cellulose breakdown

June 24, 2011

Ionic liquids have emerged as promising new solvents capable of disrupting the cellulose crystalline structure in a wide range of biomass feedstocks.

Recommended for you

Making biological drugs with spider silk protein

May 23, 2017

Researchers at Karolinska Institutet in Sweden have managed to synthesise lung surfactant, a drug used in the care of preterm babies, by mimicking the production of spider silk. Animal studies reveal it to be just as effective ...

A new tool for discovering nanoporous materials

May 23, 2017

Materials classified as "nanoporous" have structures (or "frameworks") with pores up to 100 nm in diameter. These include diverse materials used in different fields from gas separation, catalysis, and even medicine (e.g. ...

Taking a closer look at genetic switches in cancer

May 22, 2017

Many things go wrong in cells during the development of cancer. At the heart of the chaos are often genetic switches that control the production of new cells. In a particularly aggressive form of leukemia, called acute myeloid ...

Micro delivery service for fertilizers

May 22, 2017

Plants can absorb nutrients through their leaves as well as their roots. However, foliar fertilization over an extended period is difficult. In the journal Angewandte Chemie, German researchers have now introduced an efficient ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.