Scientists untangle nanotubes to release their potential in the electronics industry (w/ Video)

October 21, 2013 by Dr Ling Ge

(Phys.org) —Researchers have demonstrated how to produce electronic inks for the development of new applications using the 'wonder material', carbon nanotubes.

Carbon nanotubes are lightweight, strong and conduct electricity, which make them ideal components in new electronics devices, such as tablet computers and touchscreen phones, but cannot be used without being separated out from their natural tangled state.

In the video above, Dr Stephen Hodge and Professor Milo Shaffer, both from Imperial's Department of Chemistry, talk about the challenges of unravelling and applying carbon nanotubes in the laboratory and how the method is being scaled up to meet the requirements of industrial-scale manufacturing.

Carbon nanotubes are hollow, spaghetti-like strands made from the same material as graphene; only one nanometre thick but with theoretically unlimited length. This 'wonder material' shares many of graphene's properties, and has attracted much public and private investment into making it into useful technology.

By giving the nanotubes an electrical charge, they were able to pull apart individual strands. Using this method, nanotubes can be sorted or refined, then deposited in a uniform layer onto the surface of any object.

In the video above, Dr. Stephen Hodge and Professor Milo Shaffer, both from Imperial's Department of Chemistry, talk about the challenges of unraveling and applying carbon nanotubes in the laboratory and how the method is being scaled up to meet the requirements of industrial-scale manufacturing. Credit: Imperial College London

Working with an industrial partner, Linde Electronics, they have produced an electrically-conductive ink, which coats nanotubes onto ultra-thin sheets of transparent film that are used to manufacture flat-screen televisions and computer screens.

This was developed by Professor Shaffer and colleagues from the London Centre for Nanotechnology, which includes fellow Imperial scientist Dr Siân Fogden, as well as Dr Chris Howard and Professor Neal Skipper from UCL.

The research is written up in the journals Nature Communications and ACS Nano.

Explore further: Densest array of carbon nanotubes grown to date

Related Stories

Densest array of carbon nanotubes grown to date

September 20, 2013

Carbon nanotubes' outstanding mechanical, electrical and thermal properties make them an alluring material to electronics manufacturers. However, until recently scientists believed that growing the high density of tiny graphene ...

Nanotechnology may lead to more energy-efficient electronics

February 14, 2012

Carbon nanotubes and graphene consist of just a couple of layers of carbon atoms, but they are lighter than aluminium, stronger than steel and can bend like spring-coils. Physicist Niklas Lindahl at the University of Gothenburg, ...

Carbon nanotubes twice as strong as once thought

September 15, 2010

Carbon nanotubes -- those tiny particles poised to revolutionize electronics, medicine, and other areas — are much bigger in the strength department than anyone ever thought, scientists are reporting.

Recommended for you

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...

Researchers discover new way to power electrical devices

December 11, 2017

A team of University of Alberta engineers developed a new way to produce electrical power that can charge handheld devices or sensors that monitor anything from pipelines to medical implants.The discovery sets a new world ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

NikFromNYC
1 / 5 (6) Oct 21, 2013
The tube dress shot was appreciated.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.