Most distant gravitational lens helps weigh galaxies

October 17, 2013
This picture from the NASA/ESA Hubble Space Telescope shows the most distant gravitational lens yet discovered. The glow at the center of this picture is the central regions of a normal galaxy. By chance it is precisely aligned with a much more remote, young star-forming galaxy. The light from the more distant object is bent around the nearer object by its strong gravitational pull to form a ring of multiple images. The chance of finding such an exact alignment is very small, suggesting that there may be more star-forming galaxies in the early Universe than expected. Credit: NASA/ESA/A. van der Wel

An international team of astronomers has found the most distant gravitational lens yet—a galaxy that, as predicted by Albert Einstein's general theory of relativity, deflects and intensifies the light of an even more distant object. The discovery provides a rare opportunity to directly measure the mass of a distant galaxy. But it also poses a mystery: lenses of this kind should be exceedingly rare. Given this and other recent finds, astronomers either have been phenomenally lucky—or, more likely, they have underestimated substantially the number of small, very young galaxies in the early Universe.

Light is affected by gravity, and light passing a will be deflected as a result. Since the first find in 1979, numerous such have been discovered. In addition to providing tests of Einstein's theory of general relativity, gravitational lenses have proved to be valuable tools. Notably, one can determine the mass of the matter that is bending the light—including the mass of the still-enigmatic dark matter, which does not emit or absorb light and can only be detected via its gravitational effects. The lens also magnifies the background light source, acting as a "natural telescope" that allows astronomers a more detailed look at distant than is normally possible.

Gravitational lenses consist of two objects: one is further away and supplies the light, and the other, the lensing mass or , which sits between us and the distant light source, and whose gravity deflects the light. When the observer, the lens, and the distant light source are precisely aligned, the observer sees an Einstein ring: a perfect circle of light that is the projected and greatly magnified image of the distant light source.

Now, astronomers have found the most distant gravitational lens yet. Lead author Arjen van der Wel (Max Planck Institute for Astronomy, Heidelberg, Germany) explains: "The discovery was completely by chance. I had been reviewing observations from an earlier project when I noticed a galaxy that was decidedly odd. It looked like an extremely young galaxy, but it seemed to be at a much larger distance than expected. It shouldn't even have been part of our observing programme!"

Van der Wel wanted to find out more and started to study images taken with the Hubble Space Telescope as part of the CANDELS and COSMOS surveys. In these pictures the mystery object looked like an old galaxy, a plausible target for the original observing programme, but with some irregular features which, he suspected, meant that he was looking at a gravitational lens. Combining the available images and removing the haze of the lensing galaxy's collection of stars, the result was very clear: an almost perfect Einstein ring, indicating a gravitational lens with very precise alignment of the lens and the background light source.

The lensing mass is so distant that the light, after deflection, has travelled 9.4 billion years to reach us. Not only is this a new record, the object also serves an important purpose: the amount of distortion caused by the lensing galaxy allows a direct measurement of its mass. This provides an independent test for astronomers' usual methods of estimating distant galaxy masses—which rely on extrapolation from their nearby cousins. Fortunately for astronomers, their usual methods pass the test.

But the discovery also poses a puzzle. Gravitational lenses are the result of a chance alignment. In this case, the alignment is very precise. To make matters worse, the magnified object is a starbursting dwarf galaxy: a comparatively galaxy (it has only about 100 million solar masses in the form of stars), but extremely young (about 10-40 million years old) and producing new stars at an enormous rate. The chances that such a peculiar galaxy would be gravitationally lensed is very small. Yet this is the second starbursting dwarf galaxy that has been found to be lensed. Either astronomers have been phenomenally lucky, or starbursting dwarf galaxies are much more common than previously thought, forcing to re-think their models of .

Van der Wel concludes: "This has been a weird and interesting discovery. It was a completely serendipitous find, but it has the potential to start a new chapter in our description of galaxy evolution in the early Universe."

Explore further: A serendipitous gravitational lens

More information: van der Wel et al., "Discovery of a quadruple lens in CANDELS with a record lens redshift z = 1.53" , Astrophysical Journal Letters, 2013.

Related Stories

A serendipitous gravitational lens

November 21, 2011

( -- The path traveled by a light beam will bend in the presence of matter. This remarkable prediction, reached by Einstein in his theory of general relativity, was confirmed by observations of the solar eclipse ...

A space-time magnifying glass

May 15, 2013

( —Bright arcs are smeared around the heart of galaxy cluster Abell S1077 in this image taken by the NASA/ESA Hubble space telescope. The arcs are stretched images of distant galaxies distorted by the cluster's ...

Another amazing ALMA result

May 30, 2013

Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed some of the most distant and actively star forming galaxies in our universe, thanks to an effect called gravitational lensing, which ...

Distorting the lens

February 9, 2012

( -- One of the most bizarre predictions of Einstein's Theory of General Relativity is the existence of back holes, objects that are so dense that not even light can escape from their gravitational grasp. A related ...

Hubble zooms in on a magnified galaxy

February 2, 2012

( -- Thanks to the presence of a natural "zoom lens" in space, NASA's Hubble Space Telescope got a uniquely close-up look at the brightest "magnified" galaxy yet discovered.

Recommended for you

In search of the ninth planet

October 17, 2017

A University of Michigan doctoral student has logged two pieces of evidence that may support the existence of a planet that could be part of our solar system, beyond Neptune.

To keep Saturn's A ring contained, its moons stand united

October 17, 2017

For three decades, astronomers thought that only Saturn's moon Janus confined the planet's A ring - the largest and farthest of the visible rings. But after poring over NASA's Cassini mission data, Cornell astronomers now ...

Webcam on Mars Express surveys high-altitude clouds

October 17, 2017

An unprecedented catalogue of more than 21 000 images taken by a webcam on ESA's Mars Express is proving its worth as a science instrument, providing a global survey of unusual high-altitude cloud features on the Red Planet.

Microbes leave 'fingerprints' on Martian rocks

October 17, 2017

Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.