Butterfly inspires new nanotechnology

September 2, 2013

By mimicking microscopic structures in the wings of a butterfly, an international research team has developed a device smaller than the width of a human hair that could make optical communication faster and more secure.

The researchers, from Swinburne University of Technology in Australia and Friedrich-Alexander Universität Erlangen-Nürnberg in Germany, have produced a photonic crystal that can split both left and right circularly polarised light.

The design for this crystal was inspired by the Callophrys Rubi butterfly, also known as the Green Hairstreak. This butterfly has 3D nano-structures within its wings which give them their vibrant green colour. Other insects also have that provide colour, but the Callophrys Rubi has one important difference.

"This butterfly's wing contains an immense array of interconnected coiled springs that form a unique optical material. We used this concept to develop our photonic crystal device," Swinburne PhD graduate, Dr Mark Turner, said.

Using 3D laser nano-technology, the Swinburne researchers built a photonic crystal with properties that don't exist in naturally occurring crystals, specifically one that works with circular polarisation. This miniature device contains over 750,000 tiny polymer nano-rods.

The photonic crystal acts as a miniature polarising beamsplitter, similar to a device invented by Scottish scientist William Nicol in 1828. Polarising beamsplitters used in modern technology - such as telecommunications, microscopy and multimedia - are built from naturally occurring crystals, which work for linearly polarised light but not circularly polarised light.

"We believe we have created the first nano-scale chiral beamsplitter," Director of the Centre for Micro-Photonics at Swinburne, Professor Min Gu, said.

"It has the potential to become a useful component for developing integrated that play an important role in optical communications, imaging, computing and sensing.

"The technology offers new possibilities for steering light in nano-photonic devices and takes us a step closer towards developing optical chips that could overcome the bandwidth bottleneck for ultra-high speed optical networks."

The research has been published in the journal Nature Photonics.

Explore further: Scientists design new lens with convex and concave functionality, potential to revolutionise optical devices

More information: www.nature.com/nphoton/journal … photon.2013.233.html

Related Stories

Universe's secrets closer thanks to ultrafast lasers

July 9, 2013

Research from the Institute of Photonics and Quantum Sciences (IPaQS) at Heriot-Watt, has the potential to revolutionise how we observe the universe using telescopes, with a new approach that exploits ultrashort pulses of ...

Scientists shed light on glowing materials

August 20, 2012

Researchers at King's College London, in collaboration with European research institutes ICFO (Barcelona) and AMOLF (Amsterdam), have succeeded in mapping how light behaves in complex photonic materials inspired by nature, ...

Researchers glimpse the inside of a photonic crystal

October 2, 2012

(Phys.org)—While today's smart phones, tablets, and other small electronic devices rely on electrical data connections, in the future they may use optical connections in order to become even faster and smaller. Photonic ...

Recommended for you

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

Physicists design $100 handheld muon detector

November 20, 2017

At any given moment, the Earth's atmosphere is showered with high-energy cosmic rays that have been blasted from supernovae and other astrophysical phenomena far beyond the Solar System. When cosmic rays collide with the ...

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.