A new tool to split X-ray laser pulses

August 8, 2013 by Glenn Roberts Jr., SLAC National Accelerator Laboratory
This soft X-ray split-and-delay system divides individual X-ray laser pulses into two separate, closely spaced pulses at SLAC's LCLS. Credit: Matt Beardsley/SLAC

(Phys.org) —A new tool at SLAC's Linac Coherent Light Source splits individual X-ray laser pulses into two pulses that can hit a target one right after another with precisely controlled timing, allowing scientists to trigger and measure specific ultrafast changes in atoms and molecules.

Built through a collaboration of SLAC and Western Michigan University and installed in May, the system controls the tilt and height of two silicon mirrors to split the pulses and vary their arrival times by up to 200 femtoseconds, or quadrillionths of a second, with a timing accuracy down to a fraction of a .

The soft X-ray split-and-delay tool has already been put to use in two experiments at LCLS.

"It's working even better than designed," said Brendan Murphy, a postdoctoral research associate at Western Michigan University who played a leading role in the system's development. "With these first experiments we've established that this is an effective tool that offers unique strengths over other approaches."

Nora Berrah of Western Michigan University, who has led pioneering experiments at LCLS, worked with John Bozek, a staff scientist who manages the LCLS Soft X-ray Department, to oversee the development of the split-and-delay system. Berrah said the split-and-delay tool can be used to study and refine the timeline of fundamental processes in molecules and atoms, such as the creation of highly charged states, and explore the rearrangement of an atom's innermost electrons.

Brendan Murphy of Western Michigan University discusses the soft X-ray split-and-delay tool installed at SLAC. Credit: SLAC Multimedia Communications

In the first experiment using the system, a research team led by Berrah and Murphy measured the possible fundamental mechanisms for radiation damage in a large molecule to model damage in biomolecules. "We were watching how a big molecule falls apart after ," Berrah said, in order to understand how to best minimize this damage.

While there are already techniques and tools to divide X-ray pulses and produce closely spaced pulses, as well as several more in development for use at LCLS and other X-ray lasers, the new system is distinguished by its precise timing and the ability to measure the energy of every pulse. The first pulse "pumps" energy into the sample to create a specific response, and the following pulse probes and measures the resulting changes at a specific point in time. The energy signatures of the pump and probe pulses allow researchers to measure and interpret their effects on the sample.

Working in the soft X-ray range, this new system can be used to excite changes in atoms of a specific element, said Murphy, who is a part of Berrah's research group.

"You can pick which element you want to study in a given sample and even within a molecule," he said.

With other two-pulse techniques, a timing jitter, or fluctuations, typically make it difficult to precisely space the pulses. With this new split-delay tool, the spacing between pulses "is almost jitter-free on a scale of even the shortest X-ray pulses," Murphy said.

Currently installed at the Atomic, Molecular and Optical Science (AMO) experimental station at LCLS, the new is transportable and can be moved to a neighboring soft X-ray experimental station.

Explore further: New X-ray tool proves timing is everything

Related Stories

New X-ray tool proves timing is everything

February 20, 2013

(Phys.org)—With SLAC's Linac Coherent Light Source X-ray laser, timing is everything. Its pulses are designed to explore atomic-scale processes that are measured in femtoseconds, or quadrillionths of a second. Determining ...

X-ray laser pulses in two colors

March 27, 2013

(Phys.org) —SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals between them – a feat that will ...

Early results from the world's brightest X-ray source

June 22, 2010

The first published scientific results from experiments at SLAC's Linac Coherent Light Source are out. The report, published today in Physical Review Letters, is the first look at how molecules respond to ultrafast pulses ...

New test bed probes the origin of pulses at LCLS

July 24, 2013

It all comes down to one tiny spot on a diamond-cut, highly pure copper plate. That's where every X-ray laser pulse at SLAC's Linac Coherent Light Source gets its start. That tiny spot must be close to perfect or it can impair ...

X-rays capture electron 'dance'

January 31, 2013

(Phys.org)—The way electrons move within and between molecules, transferring energy as they go, plays an important role in many chemical and biological processes, such as the conversion of sunlight to energy in photosynthesis ...

Recommended for you

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

Using organoids to understand how the brain wrinkles

February 20, 2018

A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.