New test bed probes the origin of pulses at LCLS

July 24, 2013 by Glenn Roberts Jr.

It all comes down to one tiny spot on a diamond-cut, highly pure copper plate. That's where every X-ray laser pulse at SLAC's Linac Coherent Light Source gets its start. That tiny spot must be close to perfect or it can impair and even halt LCLS operations.

SLAC in May 2013 opened a new test facility at the Accelerator Structure Test Area (ASTA) to study the complex physics and chemistry that cause that shiny copper slab, called a cathode, to degrade over time, and to identify ways to maintain and improve its performance.

"ASTA is the ideal place, the perfect place to test the cathode, RF (radio-frequency) gun and the laser for the future demands of LCLS and LCLS-II, the planned upgrade of LCLS," said Feng Zhou, a SLAC physicist who has served since March 2013 as a project leader for cathode research and development at ASTA.

Zhou added, "Understanding cathode performance and degradation has been kind of a black art, and ASTA will for the first time allow very detailed analysis aimed at maximizing performance and longevity."

The copper cathode is part of the gun, the first step in a mile-long chain of precisely tuned equipment that makes up the LCLS. In the photocathode gun, a rapid-fire strikes a millimeter-size spot on the cathode. This generates tight bunches of electrons that are accelerated in a 1-kilometer section of SLAC's . The electrons then travel through a series of magnets, called an undulator, and emit ultrabright X-ray light that travels to LCLS experimental stations at a rate of more than 100 pulses per second.

Troubles with the LCLS cathode, including technical issues that required change-out of a cathode about two years ago, sparked SLAC's push for the cathode test bed, said Erik Jongewaard, a lead engineer for the project and former project leader who oversaw the construction of the test facility at ASTA.

"We couldn't get enough charge out of the cathode," said Jongewaard, "so there was a huge amount of emphasis – a lot of work by a lot of folks – looking at ways of getting around the problem." If the cathode does not produce sufficient electrons when struck by the ultraviolet , the intensity of X-ray pulses will be limited.

Using a higher-intensity laser beam to "clean" the surface of the cathode has proven effective but requires more study.

"We want to understand the laser-cleaning process and also try to make sure this technique is robust. We also want to know the technique's limitations, and what is the optimum 'recipe,'" said Zhou.

Jongewaard said, "There may be a delicate balancing act in how much laser cleaning the surface can take before the cleaning itself damages the cathode." ASTA will enable precise measurements of how the cleaning improves or degrades the performance of each electron bunch.

ASTA will likely be used to study specialized coatings and determine whether they improve and extend the cathode's performance, too, and to test new ways to replace aging cathodes that minimize LCLS downtime.

Increasing the repetition rate of LCLS pulses, which would multiply the amount of data collected in experiments, will require advances in , laser and RF gun systems, as well as in related RF systems. Such upgrades could be tested at ASTA.

A range of sensors at ASTA will study the properties of the electrons produced with the photocathode guns, the effectiveness of the that drives the electron bunches and the chemistry at the surface of the cathodes.

The drive laser system used for photocathode gun research at ASTA will also be used in a separate effort to develop laser techniques for echo-enabled harmonic generation, which can produce highly tunable X-ray laser pulses.

Ryan Coffee, an LCLS staff scientist, and others are also working on a new diagnostic tool, to be shared by both research programs, that can precisely measure the properties of ultraviolet laser pulses. This group had developed a similar tool to measure X-ray laser pulses. Coffee said the laser system at ASTA has already been upgraded to provide more flexibility for a range of experiments benefiting both efforts. "Everybody wins," he said.

Jongewaard said ASTA could eventually serve as a hub for researchers from other labs to collaborate in testing cathodes and related components. "In some sense this could become a small user facility," he said.

Explore further: New tool to measure X-ray pulses borrows from SLAC history (w/ Video)

Related Stories

New X-ray tool proves timing is everything

February 20, 2013

(—With SLAC's Linac Coherent Light Source X-ray laser, timing is everything. Its pulses are designed to explore atomic-scale processes that are measured in femtoseconds, or quadrillionths of a second. Determining ...

X-ray laser pulses in two colors

March 27, 2013

( —SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals between them – a feat that will ...

Have Gun, Will Travel (at Light Speed)

January 25, 2007

The front third of the linac is undergoing an extreme makeover, metamorphosing into a first-of-its-kind hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS). But even with the engineering magic embodied ...

An impressive and growing array of lasers at SLAC

February 28, 2013

In less than a decade, SLAC has built up an impressive array of dozens of laser systems – and a team of laser scientists and engineers – with capabilities that make it one of the most cutting-edge national laboratories ...

All systems go: A new high-energy record for LCLS

June 27, 2013

( —John Hill watched with eager anticipation as controllers ramped up the power systems driving SLAC's X-ray laser in an attempt to achieve the record high energies needed to make his experiment a runaway success.

Recommended for you

Now you can levitate liquids and insects at home

August 15, 2017

Levitation techniques are no longer confined to the laboratory thanks to University of Bristol engineers who have developed an easier way for suspending matter in mid-air by developing a 3D-printed acoustic levitator.

ATLAS observes direct evidence of light-by-light scattering

August 15, 2017

Physicists from the ATLAS experiment at CERN have found the first direct evidence of high energy light-by-light scattering, a very rare process in which two photons – particles of light – interact and change direction. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.