# Practice at 'guesstimating' can speed up math ability

A person's math ability can range from simple arithmetic to calculus and abstract set theory. But there's one math skill we all share: a primitive ability to estimate and compare quantities without counting, like when choosing a checkout line at the grocery store.

Previous studies have suggested there's a connection between how well a person does at the approximate number system and how skilled they become at the symbolic they learn in school.

Duke University researchers wanted to know if this ability could be enhanced by giving people more practice at approximate number math.

It can, according to new research by Duke psychologist Elizabeth Brannon and postdoctoral researcher Joonkoo Park. Their findings, which were supported by a National Institutes of Health grant and a Duke neuroscience fellowship, appeared online Aug. 6 in the journal Psychological Science.

To test the idea, they enrolled 26 adult volunteers and tested their symbolic math ability before and after 10 that were designed to hone their approximate number skills. On each of these training sessions, the participants practiced adding and subtracting large quantities of dots without counting.

They were briefly shown two arrays of nine to 36 dots on a and then asked whether a third set of dots was larger or smaller than the sum of the first two sets, or whether it matched the sum.

As participants improved at the game the automated sessions became more difficult by making the quantities they had to judge closer to each other.

Before the first training session and after the last one, their symbolic math ability was tested with a set of two- and three-digit addition and subtraction problems, sort of like a third-grader's homework. They solved as many of these problems as they could in 10 minutes. Another group of took the math tests without the approximate number training.

Those who had received the 10 training sessions on approximate arithmetic showed more improvement in their math test scores compared to the control group.

In a second set of experiments, participants were divided into three groups to isolate whether there had been some sort of placebo effect on the first experiment that made the approximate arithmetic group perform better. One group added and subtracted quantities as before, a second performed a repetitive and fast-paced rank-ordering with Arabic digits, and the third answered multiple choice questions that tapped their general knowledge (e.g., "which city is the capital of France?")

Again, the people who were given the approximate arithmetic training showed significantly more improvement in the math test compared to either control group.

"We are conducting additional studies to try and figure out what's driving the effect, and we are particularly excited about the possibility that games designed to hone approximate number sense in preschoolers might facilitate math learning," Park said.

Park and Brannon can't yet isolate the mechanism behind their effect, but the research does suggest that there is an important causal link between approximate number sense and symbolic .

"We think this might be the seedsâ€”the building blocksâ€”of mathematical thinking," Brannon said.

More information: "Training the Approximate Number System Improves Math Proficiency," Joonkoo Park and Elizabeth M. Brannon. Psychological Science, Aug. 6, 2013. doi:10.1177/0956797613482944

Journal information: Psychological Science

Provided by Duke University

Explore further

Spatial training boosts math skills

Feedback to editors