More efficient and economical capture of power plant carbon dioxide emissions

August 22, 2013

A consortium led by VTT Technical Research Centre of Finland has developed a new technology that captures the carbon dioxide emissions of power plants more economically and ecologically. The International Energy Agency IEA regards carbon dioxide capture as essential if the emission reduction targets set for greenhouse gases are to be met. The new technology is based on a combination of traditional circulating fluidised bed combustion and oxyfuel combustion, enabling more extensive use of cheaper fuels and even biomass. Political decisions and legislative changes will be necessary before widespread implementation of this new technology.

Seeking to slow climate change and reduce is one of today's greatest . According to the intergovernmental climate change panel IPPC, should be reduced by 50–85% by 2050. Meeting this target would mean every year dozens of additional power plants implementing carbon dioxide capture systems. Until now, capture technologies has been at the trial stage and its implementation slowed by the prohibitive cost of the available methods.

The FLEXI BURN CFB project coordinated by VTT Technical Research Centre of Finland developed and successfully demonstrated an oxyfuel combustion concept based on circulating fluidised bed combustion. This new technology combines the oxyfuel based carbon dioxide capture with flexibility and financial benefits of circulating fluidized bed combustion. In addition, the same power plant can continue operation also when capture is impossible, for example during temporary outages of the CO2 transport and storage facilities, thus reducing the investment risk.

The advantages of circulating fluidised bed combustion include high efficiency, fuel-flexibility and the option of using a large proportion of biomass in the fuel. The increased price of energy and exhaustion of good-quality fuel reserves mean it is currently more profitable to use lower-quality fuels. The fuel-flexibility enabled by this new technology will reduce dependency on imported coal and create cost savings, since cheaper options, including waste coal, can be used for fuel.

Equipping new and existing power plants with the carbon dioxide capture process will require further investments, since a part of the energy generated by power plants will inevitably be required for the production of oxygen and capture of carbon dioxide. This new technology nevertheless enables a smooth transition to carbon dioxide capture. The use of cheaper fuels can offset the costs that will inevitably be incurred through adopting the process.

The functionality of the technology was proven at a demonstration plant in Spain (30 MWth), the world's largest operational circulating fluidised bed oxyfuel combustion plant. The project also developed a commercial-scale concept for a 300MWe plant. The technology developed in the project enables the capture of the carbon dioxide generated by , but its widespread commercial implementation will require political decisions and new legislation, particularly with regard to the storage and final disposal of carbon dioxide.

Explore further: Researchers set out path for global warming reversal

Related Stories

Researchers set out path for global warming reversal

July 10, 2013

Bioenergy with carbon capture and storage (BECCS) can reverse the global warming trend and push temperatures back below the global target of 2°C above pre-industrial levels, even if current policies fail and we initially ...

Harvesting electricity from the greenhouse gas carbon dioxide

July 23, 2013

A new method for producing electricity from carbon dioxide could be the start of a classic trash-to-treasure story for the troublesome greenhouse gas, scientists are reporting. Described in an article in ACS' journal Environmental ...

Oxygen-separation membranes could aid in CO2 reduction

May 15, 2012

It may seem counterintuitive, but one way to reduce carbon dioxide emissions to the atmosphere may be to produce pure carbon dioxide in powerplants that burn fossil fuels. In this way, greenhouse gases — once isolated ...

Carbon sponge could soak up coal emissions

February 12, 2013

Emissions from coal power stations could be drastically reduced by a new, energy-efficient material that adsorbs large amounts of carbon dioxide, then releases it when exposed to sunlight.

Recommended for you

Multinationals act on ocean-clogging plastics

January 16, 2017

Forty of the world's biggest companies assembled in Davos agreed on Monday to come up with cleaner ways to make and consume plastic as waste threatens the global eco-system, especially in oceans.

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

Soil pores, carbon stores, and breathing microbes

January 16, 2017

Researchers at the Pacific Northwest National Laboratory (PNNL) recently studied how moisture influences soil heterotrophic respiration. That's the breathing-like process by which microbes convert dead organic carbon in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.