Revolutionary atmospheric-pressure plasma boosts adhesion of polymer films for roll-to-roll solar-cell production

March 27, 2013
Revolutionary atmospheric-pressure plasma boosts adhesion of polymer films for roll-to-roll solar-cell production
A new ‘diffuse coplanar surface barrier discharge’ (DCSBD) plasma source (pictured) that rapidly cleans flat polymer sheets in open-air conditions holds great promise for roll-to-roll manufacturing. Credit: 2013 Mirko Černak, Comenius University

Mass manufacture of photovoltaic materials is often achieved inexpensively by screen printing organic solar cells onto plastic sheets. The polymer known as poly(ethylene terephthalate), or PET, is a key part of the technology. Well known as the inexpensive plastic used to make soda bottles, PET has garnered increasing use as an optoelectronic substrate because of its strength and flexibility. But printing conductive solar-cell coatings onto PET is a challenge: it has a non-reactive surface and is frequently contaminated with static electric charges, which makes adhesion to other materials difficult.

Linda Wu from the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now devised an innovative to 'activate' PET surfaces for improved bonding during roll-to-roll processing. The team's experiments with 'diffuse coplanar surface barrier discharge' (DCSBD) technology show that large-area PET sheets can be microscopically abraded and chemically modified to increase surface adhesion nearly instantaneously, thanks to plasma ions generated under open-.

The video will load shortly

Plasma treatments can quickly clean the surfaces of PET and other plastics without affecting their underlying properties or appearance. Normally, this technology requires clean rooms and vacuum chambers to turn into polymer-scrubbing plasma ions. The DCSBD technique, on the other hand, operates at atmospheric pressure and generates its plasma from ordinary . It achieves this through an inventive system of parallel, strip-like electrodes embedded inside an alumina ceramic plate. Applying a high-frequency, high-voltage electric field to these strips produces a thin and very uniform plasma field from ambient gases close to the ceramic plate (see image). The planar arrangement of this device makes it simple to treat only the top of the substrate using DCSBD in roll-to-roll lines.

When the researchers treated a PET substrate with a DCSBD plasma source, they saw immediate changes to the polymer surface: single-second plasma exposure times were sufficient to transform it from a water-repellent to a water-attractive surface. These modifications occurred uniformly over the entire PET substrate and provided improved adhesion power that lasted for more than 300 hours. X-ray and atomic force microscopy revealed that the short plasma bursts increased the proportion of surface polar groups and significantly enhanced microscale roughness.

Wu notes that the DCSBD technology is safe to touch (see video), easy to operate, and can be deployed in humid and dusty industrial environments. The team is currently investigating if the high power densities present in these atmospheric plasmas can be exploited for future nanomaterial deposition applications.

Explore further: Plasma is the new green: Ionized gas improves treatment of PET fibers

More information: Homola, T., Matoušek, J., Hergelová, B., Kormunda, M., Wu, L. Y. L. & Černak, M. Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma. Polymer Degradation and Stability 97, 2249–2254 (2012). dx.doi.org/10.1016/j.polymdegradstab.2012.08.001

Homola, T., Matoušek, J., Hergelová, B., Kormunda, M., Wu, L. Y. L. & Černak, M. Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma. Polymer Degradation and Stability 97, 886–892 (2012). dx.doi.org/10.1016/j.polymdegradstab.2012.03.029

Related Stories

Image: Pretty in pink

April 4, 2011

(PhysOrg.com) -- Inside the Plasma Spray-Physical Vapor Deposition, or PS-PVD, ceramic powder is introduced into the plasma flame, which vaporizes it and then condenses it to form the ceramic coating.

Conserving resources: Producing circuit boards with plasma

October 19, 2010

There is a large growth market for flexible circuits, RFID antennas and biosensors on films. Researchers from the Fraunhofer Institute for Surface Engineering and Thin Films IST are presenting a new technology at K 2010, ...

Functional coatings from the plasma nozzle

May 10, 2012

These coatings offer protection against rust, scratches and moisture and improve adhesion: Surfaces with a nano coating. A new plasma process enables these coatings to be applied more easily and cost-efficiently – on ...

New plasma transistor could create sharper displays

February 4, 2009

(PhysOrg.com) -- By integrating a solid-state electron emitter and a microcavity plasma device, researchers at the University of Illinois have created a plasma transistor that could be used to make lighter, less expensive ...

Recommended for you

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(Phys.org)—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.